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From GPGPU to Many-Core:  
Nvidia Fermi and Intel Many  
Integrated Core Architecture

I n recent years, we’ve observed a 
strong trend towards using accel-
erators, such as GPUs and field-

programmable gate arrays (FPGAs), 
to speed up scientific applications. 
In 2010, Intel announced the Intel 
Many Integrated Core Architecture 
(Intel MIC Architecture)—a general-
purpose, many-core coprocessor that 
improves the programmability of such 
coprocessing devices by supporting a 
well-known shared-memory execu-
tion model that is based on the Intel 
Architecture. Here we compare the 
architectural features of an Nvidia 
Fermi accelerator and the Intel MIC 
Architecture and demonstrate their 
performance levels.

Architectural Overview
Today’s scientific compute facilities 
need to satisfy a steadily increasing 
computational demand with the ap-
plications they run, while being more 
focused on energy consumption. For 
the future, experts expect heteroge-
neous architectures with moderate 
amounts of “fat” cores and a large 
number of accelerators or coproces-
sors. The November 2011 Top500 
list (see www.top500.org), as well as 
recent announcements by the Texas  
Advanced Computing Center (TACC)1 
and Oak Ridge National Laboratory 

(ORNL),2 show that next-generation 
supercomputers will use coproces-
sors or accelerators to speed up com-
putation in addition to traditional 
CPUs.

The Intel MIC Architecture3 
coprocessor and the Nvidia Tesla 
C2050 accelerator4 (which features 
the Nvidia Fermi architecture) are 
compute devices with increased 
compute capabilities compared to 
traditional (host) CPUs. The Intel 
MIC Architecture was announced 
in 2010 as a massively parallel co-
processor. It’s currently available as 
a prerelease hardware, code-named 
Knights Ferry (based on Intel’s previ-
ous Larrabee design,5 see Figure 1). 
Knights Ferry and the Nvidia Tes-
la C2050 devices follow different 
design principles (see Figure 2). 
Whereas the Intel MIC Architecture 
is a many-core coprocessor based on 
Intel Architecture (IA), the Tesla 
C2050 is a massively parallel accel-
erator with specialized processing 
elements. Both devices deliver about 
the same peak performance and have 
the same power envelope.

The Intel Knights Ferry copro-
cessor plugs into a standard PCI 
Express slot. The coprocessor con-
sists of 32 general-purpose cores 
running at 1,200 megahertz (MHz). 

The cores are based on a refreshed  
Intel Pentium (P54C) design and can 
execute 64-bit scalar instructions 
as well 512-bit vector instructions 
(16 single-precision or eight double-
precision floating-point values per 
vector instruction). Each core can 
execute four hardware threads with 
round-robin scheduling between in-
struction streams, so that during each 
cycle the next instruction stream is 
selected. Knights Ferry uses the typi-
cal cache structure of per-core level-
one (L1; 32-Kbyte) and level-two 
(L2; 256-Kbyte) caches. The shared 
L2 cache with a total of 8 Mbytes 
(32 cores) uses a high-bandwidth 
ring bus for fast on-chip communi-
cation. An L3 cache doesn’t exist be-
cause of the high-bandwidth graphics 
double-data rate, version 5 memory 
(GDDR5; working at 125 Gbytes 
per second (GBps) at 1,800 MHz). 
Because Knights Ferry follows the 
key principles of the IA platform, all 
caches and the coprocessor memory 
are fully coherent.

In contrast to the Intel MIC 
Architecture, the Nvidia Fermi 
Architecture doesn’t contain general- 
purpose compute cores. Instead, it 
consists of 14 multiprocessors with 
32 processing elements each. The 
processing elements run at a clock 
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Comparing the architectures and performance levels of an Nvidia Fermi accelerator with an Intel MIC 
Architecture coprocessor demonstrates the benefit of the coprocessor for bringing highly parallel  
applications into, or even beyond, GPGPU performance regions.
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speed of 1.15 gigahertz (GHz) and a 
memory bandwidth of 144 GBps. A 
768-Kbyte L2 cache is shared across 
the 14 multiprocessors. Each mul-
tiprocessor features a 64-Kbyte L1 
cache. This cache can be separated 
into a part managed by the hard-
ware itself (48 Kbytes/16 Kbytes) 
and explicitly by the programmer 
(16 Kbytes/48 Kbytes). Because this 
device is based on the Nvidia Fermi 
architecture, it doesn’t offer vector 
instructions the way that the Intel 
MIC Architecture does; the 32 pro-
cessing elements per multiprocessor 
are instead programmed by the so-
called single-instruction, multiple 
threads (SIMT) paradigm. All pro-
cessing elements execute either the 
same instruction or some execute 
no-operation instructions in case of 
conditional branches.

Based on IA, the Intel MIC  
Architecture supports all program-
ming models that are available for tra-
ditional IA processors. The compilers  

for the Intel MIC Architecture sup-
port Fortran (including Co-array 
Fortran) and C/C++. We can use 
Open Multi-Processing (OpenMP) 
and Intel Threading Building Blocks 
for parallelization as well as emerg-
ing parallel languages such as Intel 
Cilk Plus. The Intel Composer XE 
for MIC can automatically gener-
ate vector-processing-unit (VPU) 
code either through autovectoriza-
tion, semiautomatically by pragmas 
or array syntax (guided vectoriza-
tion), or manually through intrinsic 
functions.

Because of its special architecture, 
the C2050 only supports a limited 

set of programming paradigms. 
The most important are CUDA 
and Open Computing Language 
(OpenCL), which are data-parallel 
programming models. Both offer 
minimal support for task parallel-
ism, as several kernels can be in-
voked concurrently on recent GPU 
devices. Third-party compilers— 
such as the Portland Group, In-
corporated (PGI) compiler suite or  
HMPP Workbench support offload-
ing Fortran code to the GPU, but 
they restrict the language features 
in offloaded code fragments so as 
not to violate the GPU program-
ming model.

Figure 1. The Intel Many Integrated Core Architecture (Intel MIC Architecture ) is 
currently available as prerelease hardware called Knights Ferry. (a) A Knights Ferry 
coprocessor board and (b) the Knights Ferry coprocessor die.

(a) (b)

Figure 2. Comparison of design principles for a coprocessor and an accelerator. High-level view of (a) the Intel 
MIC Architecture and (b) the Nvidia Fermi architecture. The drawing of Fermi is based on Nvidia’s diagram of the 
architecture.4 (I/F stands for interface, L1 stands for level-one cache, L2 stands for level-two cache, and Reg. 
stands for register file.)
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Performance Evaluation
To evaluate the Knights Ferry pro-
totype’s performance, let’s consider 
two data-parallel workloads. First, 
we investigate a set of self-tuning 
matrix operations. Then we ex-
amine a grid-based data-mining 
application. All performance num-
bers are given in gigaflops (Gflops) 
for single-precision f loating-point  
numbers.

TifaMMy: Cache-Oblivious  
Matrix Operations
TifaMMy (http://sourceforge.net/
projects/tifammy) is a cache-oblivious 
implementation of matrix operations. 
It uses space-filling Peano curves and 
offers an intuitive C++ API to access 
the algorithms. It uses a recursive 
scheme to partition the input data for 
computation and parallelization. This 
partitioning works well on standard  

CPUs (as we show elsewhere6). How-
ever, because of the algorithms’ 
recursive nature, a port to any GPU-
based accelerator is impracticable, as 
it would involve major code changes. 
Therefore, for this application we can 
only present results obtained on the 
Intel MIC Architecture.

Figure 3a depicts the block-recursive 
storage order of matrixes in TifaMMy’s 
algorithms. The algorithms used don’t 
require any manual tuning (for cache 
sizes or memory hierarchy, for exam-
ple). Because only a preceding or sub-
sequent matrix element is accessed, the 
implementation of TifaMMy achieves 
a high spatial locality (see Figure 3b). 
Such self-tuning algorithms effectively 
hide architectural changes when, for 
instance, running the code on the Intel 
MIC Architecture.

Porting the TifaMMy code to the 
Intel MIC Architecture was straight-
forward and easy to accomplish. All 
standard programming methods are 
applicable for Knights Ferry, which 
helps port self-adapting methods to this 
coprocessor. Of course, other classes of 
algorithms, such as partial differential 
equation (PDE) solvers, could benefit 
from the hybrid coprocessor architec-
ture that effectively supports irregular 
parallelization patterns equally well.

Figure 4 plots the performance of 
TifaMMy’s matrix-multiplication 
implementation on Knights Ferry. Its 
peak performance is roughly 620 Gflops.  
A two-socket system equipped with 
the Intel Xeon X5680 processor 
achieves about 230 Gflops. We want to 
especially highlight that the Knights 
Ferry prototype already outperforms 
the Xeon-based machine for small 
problem sizes.

Data Mining Based on Sparse Grids
We now turn to a workload for re-
gression and classification algorithms  

Figure 3. Processing order of submatrices in TifaMMy, a cache-oblivious implementation 
of matrix operations. (a) Recursive definition of matrix-storage order in TifaMMy. 
(b) By accessing only a preceding or subsequent matrix element, the algorithm 
achieves a high spatial locality.
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Figure 4. Performance of the TifaMMy matrix-multiplication implementation on 
Intel Knights Ferry. Its peak performance is around 620 gigaflops (Gflops).
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in data-mining problems. They 
can be considered scattered data-
approximation problems; both 
start from m known observations, 
S x yi i

d
i m= ∈ × ={( , ) } ,...,

�
� � 1 , with the 

aim to learn the functional dependency 
f x yi i( )� ≈  as accurately as possible. 
Reconstructing a smooth function f 
then allows an estimate f x( )�  for new 
properties �x .

We aim at representat ions,  
f x( )jj

N
j1
�∑ α ϕ= =  as a linear com-

bination of N basis functions x( )j
�

ϕ  
with coefficients αj. To obtain an al-
gorithm that scales only linearly in 
m, we associate the basis functions 
to grid points on some grid, rather 
than fitting their centers to the data. 
We rely on adaptive sparse grids (see 
elsewhere7,8 for details) to mitigate 
the curse of dimensionality: regular 
grids with equidistant meshes and k 
grid points in each dimension contain 
kd grid points in d dimensions. We 
employ two kinds of basis functions: 
uniform and modified nonuniform. 
Uniform basis functions lead to grids 
with a large number of grid points 
on the domain’s boundary, where-
as modified nonuniform functions 
extrapolate towards the domain’s 
boundary, which lead to a smaller grid  
structure.

The function f should be as close 
to the data S as possible (minimizing 
the mean-squared error). At the same 
time, close data points should have 
similar function values to general-
ize from the data. We minimize the 
tradeoff between both regularization 
parameter λ and the hierarchical basis, 
allowing for a simple generalization 
functional:

 
 

H f
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This leads to a system of linear equa-
tions, with matrix B, x( ),i j i j,B

�
ϕ=  

and identity matrix I:

 m y( ) .TBB I B� �λ α+ =

In the following, we use two test 
scenarios, both with a moderate di-
mensionality of d = 5 and distinct 
challenges. The first dataset with 
218 data points classifies a regular 
3 3�× ×  checkerboard pattern. The 
second one is a real-world dataset from 
astrophysics, predicting spectroscopic 
redshifts of galaxies based on more 
than 430,000 photometric measure-
ments. For both, we obtained excellent  
numerical results using our method 
(we present the details elsewhere9).

Because this workload doesn’t re-
quire any programming constructs 
like recursion and is data parallel, 
we were able to port it to OpenCL 
with moderate effort. We didn’t use 
CUDA because OpenCL allows run-
time code generation, which results 
in implementation and performance 
advantages (we provide the details 
elsewhere10).

Figure 5 compares the achieved 
performance on Knights Ferry with 
a current Nvidia Tesla accelerator. 
Optimizations like shared memory 
prefetches (or similar) are able to speed 
up Tesla’s performance significantly, 
whereas explicit cache prefetches only 
slightly increase Knights Ferry’s per-
formance. As the MIC code was cre-
ated within hours from the CPU’s 
version, this workload clearly em-
phasizes Knights Ferry’s ease of use. 
Using the nonuniform and modified 
grids, nested if statements occur in 
the innermost loop. Here Fermi’s 
performance drops, while Knights 
Ferry is able to keep the level of 
high performance. The IA-based 
cores of Knights Ferry can execute 
if statements more effectively than 
the Fermi architecture. Thus, the 
significantly smaller number of grid 
points leads to a noticeable decrease 

Figure 5. Performance of the data-mining application on the Intel Knights Ferry coprocessor and Nvidia C2050 accelerator. 
Intel Knights Ferry delivers better performance than the Nvidia Tesla C2050. DR5 stands for data release 5. We provide a 
detailed discussion of the application’s performance elsewhere.10
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of the overall execution time. Last 
but not least, Intel MIC also supports 
multicoprocessor configurations. By 
using two Knights Ferry devices si-
multaneously, we see a speedup of 
1.9×, whereas two Tesla devices only 
yield 1.7×.

We demonstrated that Intel MIC 
Architecture devices can easily 

be used to bring highly parallel ap-
plications into, or even beyond, GPU 
performance regions (data mining 
with adaptive sparse grids). These 
devices can even be used for applica-
tions that aren’t feasible on GPUs 
(such as TifaMMy). Using well-
known programming models such 
as OpenMP and vectorization, the 
Intel MIC Architecture minimizes 
the porting effort for existing high-
efficiency processor implementations. 
Moreover, programming on the Intel 
MIC Architecture doesn’t require any 
special tools, because its support is in-
tegrated into the complete Intel tool 
chain, ranging from compilers over 
math libraries to performance analy-
sis tools. As future HPC systems will 
most likely be hybrid machines with 
fat cores and coprocessors, program-
ming for the Intel MIC Architecture 
eases the burden for developers; codes 
developed for the system’s CPU por-
tion can be reused on the coproces-
sor without too much of a porting  
effort.�
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