Front. Comput. Sci., 2014, 8(3): 345-356
DOI 10.1007/s11704-014-3501-3

RESEARCH ARTICLE

MilkyWay-2 supercomputer: system and application

Xiangke LIAO (X)!2, Liquan XIAO?, Canqun YANG ', Yutong LU?

1 Science and Technology on Parallel and Distributed Processing Laboratory,

National University of Defense Technology, Changsha 410073, China

2 College of Computer, National University of Defense Technology, Changsha 410073, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract On June 17, 2013, MilkyWay-2 (Tianhe-2) su-
percomputer was crowned as the fastest supercomputer in
the world on the 41th TOP500 list. This paper provides
an overview of the MilkyWay-2 project and describes the
design of hardware and software systems. The key archi-
tecture features of MilkyWay-2 are highlighted, including
neo-heterogeneous compute nodes integrating commodity-
off-the-shelf processors and accelerators that share similar
instruction set architecture, powerful networks that employ
proprietary interconnection chips to support the massively
parallel message-passing communications, proprietary 16-
core processor designed for scientific computing, efficient
software stacks that provide high performance file system,
emerging programming model for heterogeneous systems,
and intelligent system administration. We perform extensive
evaluation with wide-ranging applications from LINPACK
and Graph500 benchmarks to massively parallel software de-
ployed in the system.

Keywords MilkyWay-2 supercomputer, petaflops com-
puting, neo-heterogeneous architecture, interconnect net-
work, heterogeneous programing model, system manage-

ment, benchmark optimization, performance evaluation

1 Introduction

The techniques of high performance computing (HPC) are
developing very rapidly during these years. HPC is con-
sidered as a strategic infrastructure to fulfill industrial and

Received September 6, 2013; accepted December 30, 2013

E-mail: xkliao@nudt.edu.cn

societal requirements. There continues to be considerable de-
mand greater computing power, which is important to fos-
ter innovation and improve competitiveness in science and
technology. HPC community has broken through the barrier
of petaflops, and is keen to take the race for exascale com-
puting. Grand challenges facing exascale computing, com-
ing from architecture, programming model, application and
many other aspects, need to be solved before the anticipated
arrival of the age of exascale computing near the end of
this decade. Following the successes of research efforts in
TianhelA [1] and many other major systems in the last two
decades, we continue to address the issues of performance,
scalability, programmability, energy efficiency, and relia-
bility, and explore new supporting technologies to achieve
world-class scale computing capabilities.

MilkyWay-2 (Tianhe-2, or simply TH-2) supercomputer is
another important milestone developed by National Univer-
sity of Defense Technology (NUDT) in post petaflops era. It
is sponsored by the National High-tech R&D Program (863
Program) administered by the Ministry of Science and Tech-
nology in China. It was ranked No.l on the 41th Top500
list in June, 2013, retained lead on the 42th Top500 list in
November, 2013, after Tianhe-1A getting on the Topl in
November 2010. MilkyWay-2 is installed in National Super-
computing Center of Guangzhou (NSCC-GZ), and services
as a nationwide computing infrastructure to facilitate scien-
tific discoveries and technical innovations, and tackle key is-
sues that concern the local government.

This paper is organized as follows. We first present system

346 Front. Comput. Sci., 2014, 8(3): 345-356

overview of MilkyWay-2 hardware and software in Section
2. The highlights of system components are then described
in Section 3. We present the system optimization for HPC
benchmarks in Section 4, followed by a brief summary of the
sample applications running on MilkyWay-2. We conclude
this paper with a future perspective for applications and im-
pacts of MilkyWay-2.

2 System overview

Although MilkyWay-2, like its predecessor, TianhelA, still
employs accelerator based architectures, it is largely re-
designed and managed to make a careful balance between the
need for technological advancement of proprietary compo-
nents and the availability of existing components. The goals
of the design are to provide high computational performance
under acceptable total of cost, power budgets, capabilities of
supporting reliability, availability, and serviceability (RAS),
complexity of application development and porting.

The hardware system is composed of five subsystems, cov-
ering compute, communication, storage, monitoring and di-
agnostic, and service. MilkyWay-2 has four compute frames
per compute rack, and 32 compute nodes, one switch board
and one monitor board in one compute frame, where they
are electrically connected by the midplane and packaged in
a compact structure. MilkyWay-2 consists of 125 compute
racks, thereby 16 000 compute nodes. Each compute node is
equipped with two Intel Xeon E5-2600 processors, three In-
tel Xeon Phi accelerators based on the many-integrated-core
(MIC) architecture and 64 GB memory, delivering a peak
performance of 3 432 GFLOPS. All compute nodes are con-
nected to the top-level switches by virtue of their local switch
boards, following a customized fat-tree topology. The heart of
the communication subsystem is the proprietary high-speed
interconnection chips, including high-radix switch chip and
network interface chip. The interconnection chips achieve a
high bi-directional bandwidth of each port, which can simul-
taneously send and receive at 10 GB/s, and supports both
collective and global barrier functions. A thin communica-
tion software layer is built upon the chips and enables ap-
plications to achieve low-latency and high-throughput. The
service subsystem is composed of 4 096 nodes, packaged in
eight service racks. It is designed to accelerate emerging in-
formation service applications that call for high throughput
instead of computation, e.g., big data processing. These ser-
vice nodes also serve as front-end nodes that provide a gate-

way to application development and administration for the
MilkyWay-2 system. They are installed with software devel-
opment and scheduler tools, such as compilers, debuggers
and job launch commands. Each service node is powered
by a proprietary FT-1500 CPU, which implements SPARC
V9 instruction set architecture, has 16 cores and runs at 1.8
GHz and 65 Watts, and delivers a peak performance of 144
GFLOPS. The storage subsystem contains 256 I/O nodes and
64 storage servers with a total capacity of 12.4 PB, packaged
in 24 storage racks. It exploits hybrid hierarchy storage archi-
tecture, which enables the shared storage with large capacity,
high bandwidth and low latency. The monitor and diagno-
sis subsystem adopts the centralized management architec-
ture with distributed agents, achieving real-time monitoring,
convenient control, and accurate diagnosis for MilkyWay-2.

The software stack of MilkyWay-2 consists of four envi-
ronments, including system environment, application devel-
opment environment, runtime environment and management
environment. System environment consists of the operating
system, the parallel file system and the resource manage-
ment system. The operating system is a 64-bit Kylin OS, sup-
porting massive applications. The parallel file system adopts
large-scale hybrid hierarchy storage architecture, which sup-
ports I/O aggregate bandwidth of above 500 GB/s. The re-
source management system gives a unified view of the re-
sources in MilkyWay-2 system. Various job scheduling poli-
cies and resource allocation strategies are implemented so
that system throughput and resource utilization can be effec-
tively improved. Application development environment sup-
ports multiple programming languages including C, C++,
Fortran 77/90/95, and a heterogeneous programming model
named OpenMC, and the traditional OpenMP and MPI pro-
gramming models. The parallel development tools provide
a unity GUI which supports application tuning and profil-
ing effectively. Runtime environment consists of the paral-
lel numerical toolkit for multi-field of scientific applications,
the scientific data visualization system, and the HPC appli-
cation service and cloud computing platform. The environ-
ment provides programming and runtime support to multi-
ple fields, including scientific and engineering computing,
big data processing and high throughput information service.
Management environment implements fault monitoring and
autonomic management. The autonomic fault tolerant man-
agement system provides real-time error probing, fault diag-
nosis and maintenance guide. These functions significantly
simplify the system maintenance process and effectively im-
prove the system usability.

Xiangke LIAO et al.

3 Highlights of system components
3.1 Neo-heterogeneous compute node

A MilkyWay-2 compute node is built using two CPUs and
three coprocessors, as shown in Fig. 1. The CPU is a 12-core
Intel Xeon processor E5-2600 v2 product family based on
Ivy Bridge architecture clocked at 2.2 GHz, and the copro-
cessor is a 57-core Intel Xeon Phi 3100 family clocked at 1.1
GHz, which is based on Intel MIC architecture. Two CPUs
are directly interconnected by two full-width Intel QPI links,
and each CPU is configured with two 16-lane PCI Express
(PCI-E) interfaces, eight DIMMs within four memory chan-
nels. A compute node can be configured with up to 128 GB
memory using 16 GB DIMMs. One CPU, the upper one in
Fig. 1, is connected to the platform controller hub (PCH).
One of the PCI-E interfaces in the upper CPU is connected to
the proprietary high-speed interconnection network through
the network interface chip (denoted by NIC), and the other
is connected to one Intel Xeon Phi coprocessor. Each PCI-E
interface in the other CPU, the lower one in Fig. 1, is con-
nected to one Intel Xeon Phi. CPLD chip is responsible for
administrating the whole computer node via IPMB bus.

Proprietary high-
speed network

; ¢
NIC 16X PCIE

Dual Gigabit LAN

I I

CPU &

16X PCIE
——

H [] QPI
16X PCIE

—

CPLD

16xpCcIE | CPU
:>

j‘?ﬁ

Fig.1 The neo-heterogeneous architecture of compute node

IPMB T

Intel MIC architecture products run on standard, existing
programming tools and methods, and use the same familiar
programming model as the widely used Intel Xeon proces-
sors. That is, the same program source code (i.e., standard
C, C++, FORTRAN, etc.) written for Intel MIC products
can be compiled and run on a standard Intel Xeon proces-
sor. Comparing to multicore processor, Intel Xeon Phi offers
many cores with wider vector processing units for greater
floating point performance per watt. Furthermore, this copro-

MilkyWay-2 supercomputer: system and application 347

cessor has a few advantages over general purpose graphics
processing units (GPGPUs). For example, it can operate in-
dependently with CPUs and does not require special code.
These features make Intel Xeon Phi allowing higher aggre-
gate performance for today’s most demanding applications
in the most efficient and time-effective way. Therefore, In-
tel Xeon Phi coprocessor is selected in MilkyWay-2 to work
with the Intel Xeon processor to increase developer produc-
tivity via common programming models and tools.

Since both Intel Xeon processor and Intel Xeon Phi co-
processor have similar instruction set architecture (ISA) but
different arithmetic logic units (ALU), we call this hy-
brid architecture with a unified programming model neo-
heterogeneous architecture. This kind of architecture has
multiple classes of compute capabilities that are accessed by a
common programming model, streamlining development and
optimization processes, which are not possible when using a
combination of CPUs and GPU accelerators.

3.2 TH Express-2 network

called TH
Express-2 network for high-bandwidth and low-latency in-

MilkyWay-2 uses proprietary interconnect,

terprocessor communications. All network logic is developed
and integrated into two specific ASIC chips, i.e., high-radix
router chip and network interface chip. Both of them adopt
efficient mechanisms to achieve high performance communi-
cations with regard to bandwidth, latency, reliability and sta-
bility. High-radix router chips are further used as basic build-
ing blocks to create switch boards of 48 ports and top-level
switches of 576 ports. 32 compute nodes are packaged in one
compute frame and connected by a switch board using an
electrical backplane. A total of 500 compute frames are con-
nected through top-level switches using active optical cables
following a fat-tree topology, as shown in Fig. 2. TH Express-
2 network leverages the features of high-radix router and net-
work interface chips, and implements an optimized message
passing interface (MPI) layer, and thus can support efficient
execution of massively parallel message-passing programs
from user space with minimal software overhead.

3.2.1 High-radix router

This high-radix router chip designed for MilkyWay-2, called
HNR2, is an evolutionary upgrade of its predecessor in
Tianhe-1A and offers improved performance. HNR2 switches
data among 16 symmetric network ports. Each port has eight
lanes with the bi-directional bandwidth of 160 Gbps. Some
novel techniques are used in HNR2 such as dynamic buffer

348 Front. Comput. Sci., 2014, 8(3): 345-356

Rack 63

Rack 124

32 compute nodes 32 compute nodes 32 compute nodes 32 compute nodes

O . I R0 0T R AT

32 compute nodes — compute nodes 32 compute nodes

32 compute nodes 32 compute nodes 32 compute nodes 32 compute nodes

I LN
32 compute nodes 32 compute nodes 32 compute nodes

32 computc nodes

Rack 0

Rack 62

Fig.2 TH Express-2 network architecture and topology

allocation, adaptive routing based on hierarchical look-up ta-
ble, intelligent network management, low-latency scrambler,
improved rolling CRC, etc.

Specifically, HNR2 adopts a hierarchical design methodol-
ogy and splits the crossbar switch into interconnected smaller
tiles that allow for efficient layout implementation. This de-
sign, however, calls for considerably more buffers compared
to traditional input-queued switches with single crossbar. To
mitigate the memory usage overhead, HNR2 uses customized
dynamically allocated multi-queue (DAMQ) [2] to decrease
the buffer size and improve the buffer utilization, while still
meeting tight latency budgets.

HNR2 employs an adaptive routing method by using a
hierarchical look-up table, and provides load balancing and
fault tolerance. Upon the arrival of each packet head, mul-
tiple output ports are calculated based on the look-up table,
and one of them is selected according to a utility function.
These routing tables are constructed in a hierarchical fashion
to reduce the storage overheads. Each HNR2 router or com-
pute node in MilkyWay-2 supercomputer is assigned a unique
ID which identifies its location in the packaging hierarchy. It
is convenient to exploit hierarchical routing tables to support
different routing methods in interconnection networks with
regular or non-regular topology.

HNR?2 provides a lot of management techniques to im-
prove the RAS (reliability, availability and serviceability) ca-
pability of TH Express-2 network. Advanced functions, e.g.,
routing trace, link test, fault reporting, and topology discov-
ery are supported by in-band management supports. Chip
configuration and status query are achieved through IIC bus
interface. These RAS features enable both real-time and his-
torical status monitoring and alerting, facilitating fault locat-
ing.

3.2.2 Network interface chip

Network interface chip (NIC) provides the software-
hardware interface for accessing the high-performance net-
work. NIC contains several advanced mechanisms to sup-
port scalable high performance computing, including pro-
tected user-level communication, remote memory access en-
gine, collective offload engine, reliable end-to-end communi-
cation etc.

A mechanism named virtual port (VP) is implemented in
the NIC to support the protected user-level communications.
Each virtual port is a combination of a small set of memory-
mapped registers and a set of related on-chip and in-memory
data structures, and the address range of registers in different

Xiangke LIAO et al.

virtual ports are spaced out at least the length of the physical
page. All the data structures can be mapped to user space, so
that it can be accessed in user space concurrently with pro-
tection.

In order to speed-up collective communication in MPI,
NIC provides offload mechanisms to accelerate collective op-
erations. The software is required to construct collective al-
gorithm tree and generate a collective descriptor sequence
for NIC to initialize collective communication. However the
collective descriptor sequence cannot be executed immedi-
ately, and should only be triggered to execute upon receiv-
ing a special control packet. When the descriptor sequence is
executed, NIC can also perform a series of swap operations
to modify the address and VP information of the descriptor
in the descriptor sequence using the data from the control
packet. To improve system reliability, a CRC in user level is
used in data packets to ensure the data integrality. When user-
level CRC errors occur, data packets will be retransferred.

3.2.3 Message passing service

To efficiently utilize the MilkyWay-2 interconnection fabric,
we implemented the galaxy express (GLEX2) communica-
tion layer, which provides low-level user-space and kernel-
space API to support the implementation of other software
systems or popular programming models, such as TCP/IP
protocol, parallel file systems, network booting system, MPI,
global arrays, and etc.

The main programming model in MilkyWay-2 is MPI. The
MPI implementation in MilkyWay-2 is mainly a high perfor-
mance network module (Netmod) within MPICH’s Nemesis
channel. Thus highly optimized on-node messaging system in
Nemesis can be used for intra-node message passing, while
GLEX2 system is used for inter-node message transferring.

There are mainly two communication protocols in MPICH:
eager and rendezvous. MilkyWay-2 MPI implements several
RDMA data transfer channels which have different resource
requirements and performance characteristics. Hybrid chan-
nel eager protocol will be used in runtime according to the
message passing mode in application, to implement the bal-
ance of performance and scalability. Nemesis features a long
message transfer (LMT) interface that facilitates implementa-
tion of zero-copy rendezvous protocol. In MilkyWay-2 MPI,
LMT is implemented using zero-copy RDMA operation of
GLEX2, to transfer bulk message data between application’s
sender buffer and receiver buffer directly. User space regis-
tration cache is also used to reduce the overhead of memory
registration for message buffers.

MilkyWay-2 supercomputer: system and application 349

Because RDMA data transfer may be out of order,
MilkyWay-2 MPI implementation contains the message re-
order mechanism and dynamic credit flow control for reliable
and orderly message passing, to support the scalable running
of large scale applications.

With the support of NIC collective offloading mecha-
nisms, MilkyWay-2 MPI also implemented the offloaded
MPI_Barrier and MPI_Bcast interfaces, which provide bet-
ter latency than the collective interface using point-to-point
operations. The offloaded optimization of other collective in-
terfaces is also being investigated.

3.3 FT1500 CPU

FT1500 is a 40 nm 16-core processor designed for scientific
computing. Each core of the FT1500 processor supports in-
terleaved execution of eight threads and 256-bit wide SIMD
processing. The SIMD processing unit supports fused multi-
ply and add instructions. FT1500 works at 1.8 GHz and de-
livers a peak performance of 115.2 GFLOPS. Each FT1500
core owns a private 16 KB L1 instruction cache, a 16 KB L1
data cache and a 512 KB L2 cache.

The 16 cores are organized as four basic cells and each cell
contains four cores, as shown in Fig. 3. A 4-MB L3 cache is
distributed among the four cells. Inside each cell, four cores
and a 1-MB L3 bank are connected through a crossbar. Two
bi-directional ports are also supplied for the interconnection
between adjacent cells, resulting in a 7x7 crossbar. Each port
of the crossbar is 256 bit width, delivering a bandwidth of 448
GB/s. The four cells are connected through a line, forming a
1 x 4 mesh network. Meanwhile, the inter-chip interface is
connected to the left port of the cell 0 and the I/O interface is

Core|Core|Core|Core
L1S|L1S[L1S|L1S
L2 S[L2S[L28|L2S

P11t

| 7 X7 Crossbar |

Left J Jm L>Right
port L3 Cache B: port
Memory
controller
///
\ T
\ T
_—— B[PCE
Cell Cell Cell Cell| __| 5 |Ethernet
0 1 2 3 £
Q [Ethernet

Fig.3 Architecture of FT1500 processor

350 Front. Comput. Sci., 2014, 8(3): 345-356

connected to the right port of the cell 3. The cache system
works at 2.0 GHz while the core works at 1.8 GHz. The
core clock is designed to be lower than the cache system for
mainly two reasons. First, it makes a better balance between
computation performance and memory bandwidth. Second,
the dynamic power consumption of the cache system is less
sensitive to the clock rate. Thus, such design establishes a
good trade-off between performance and power consumption.

The L3 cache, being a 4 MB exclusive cache, is divided
into four banks, each one working independently. The data
is statically distributed among the four banks. Each bank is
organized as a 32 way set-associative cache, and connected
directly to a memory control unit (MCU). Each MCU man-
ages a dedicated DDR3 memory channel. A directory based
protocol is employed to maintain the coherence of different
L2 caches. There are no coherence problems between differ-
ent banks of the L3 cache since only one copy exists in the
L3 cache for any data block.

FT1500 is a system-on-chip processor, which supplies di-
rect links for inter-chip interconnection, four memory con-
trollers to interface four fully buffered DIMM3 channels, two
PCIE controllers and a 10 GB Ethernet ports. The SoC design
reduces the total number of system components, resulting in
improvements of power and reliability.

3.4 Hybrid hierarchy I/O system

We build a hybrid hierarchy file system for Milky Way-2 sys-

tem, named H2FS, which co-operates node-local storage and
shared storage together into a dynamic single namespace to
optimize I/O performance in data-intensive applications.

With the increasing data scale, typical global shared stor-
age architecture, like lustre, is undergoing challenges for its
inevitable I/O request contention, unbalanced performance
and huge cost to achieve high I/O throughput. Compared with
shared storage, node-local storage is decentralized and tightly
coupled with compute node. It has natively a high degree of
parallelism and has achieved great success in big data do-
main, but the proper way to utilize local storage in HPC field
is still under exploration. For this reason, in H2FS we present
a hybrid storage architecture and management scheme for not
only hybrid of HDD and Flash, but also mixture of different
storage architectures. H2FS provides locality-aware data lay-
out and flexible management to serve diverse requirements of
both data-intensive and computation-intensive applications.
Figure 4 illustrates the file system architecture.

H2FS introduces data processing unit (DPU) and hybrid
virtual namespace (HVN) to manage local and shared stor-
age resources. DPU is a fundamental data processing unit,
which tightly couples a compute node with its local storage.
HVN provides a hybrid virtual namespace, which aggregates
local disks of DPUs and global shared disks in a unified single
namespace during application runtime. Each HVN is created
with a unified namespace and can be opened and released at
runtime. Application dataset can be distributed across DPUs

Job HPC workloads

Data-intensive workloads

4’(Job management)

i

Posix API

Interface Layout API

Policy API HVN management API

Local
storage

HVN
Management
server

Shared
storage

Policy Logging
' database’ . volume ’

Fig. 4 Architecture of H2FS

Xiangke LIAO et al.

inside an HVN at granularity of file or stripe. Locality or stor-
age type aware policies are used to optimize dataset layout,
and job scheduler can schedule task close to data for maxi-
mum locality. By employing HVNs, job working dataset can
be isolated from each other for minimum interference, and
exclusively accessed for appropriate concurrency. As for the
interface, H2FS keeps POSIX interface for compatibility, and
uses layout API, policy API and HVN API jointly for perfor-
mance optimization and integration with other softwares, like
HDFS, slurm and etc.

H2FS benefits both data-intensive applications and typical
HPC /O critical scenarios. Application can use local stor-
age as performance booster in single namespace with ben-
efits of spatial locality and ease of use. Furthermore, it can
also provide hints to guide efficient cooperation between lo-
cal and global storage to improve I/O performance. H2FS can
easily delivery high I/O aggregate bandwidth with increas-
ing nodes scale. More HPC applications can transparently
achieve benefits of node-local storage with support of unified
single namespace. It can reduce costs of building extremely
fast storage system compared with conventional centralized
one.

3.5 OpenMC programing model

Over the last few years, we have been looking for a suitable
programming model for heterogeneous systems. In Milky-
Way supercomputers, we rely on a hybrid model, in which
MPI applies to inter-node programming and “OpenMP + X
to intra-node programming, where X is accelerator-specific,
e.g., CUDA/OpenCL for GPUs [3] or “Offload” for Intel MIC
[4]. While MPI may continue to be the primary model for
inter-node programming, “OpenMP + X is becoming less
appealing as it makes intra-node programming ad hoc, fairly
complex and quite difficult to obtain the degree of portability
desired.

In search for a better intra-node programming model, we
prefer to a directive-based solution over CUDA [3] and
OpenCL [5], because the former provides a higher-level ab-
straction for programming accelerators and facilitates in-
cremental parallelization [6]. Several directive-based mod-
els, including OpenACC [7], PGI Accelerator [8,9] and
OpenHMPP [10], have recently been introduced. By provid-
ing directive-based interfaces, they enable programmers to
offload computations to accelerator and manage parallelism
and data communication.

To harness the full potential of MilkyWay-2 supercomput-
ers, existing directive-based intra-node programming mod-

MilkyWay-2 supercomputer: system and application 351

els are inadequate in three aspects. First, a single code re-
gion, when offloaded, is usually executed as a solo task in
an entire accelerator, resulting in its low utilization when the
task exhibits insufficient parallelism. Second, as accelerator-
oriented computing is emphasized, the ever-increasing pro-
cessing power of general-purpose multi-core CPUs is ne-
glected and thus inadequately exploited, especially for some
irregular applications. Finally, multiple devices, i.e., mul-
tiple multi-core CPUs and multiple many-core accelerators
are nowadays found in a single node. We need a little more
than just offering syntax to offload computations to accel-
erators. The ability to orchestrate the execution of multiple
tasks efficiently across these devices becomes essential. We
are not aware of any directive-based open-source compiler for
MilkyWay-like heterogeneous systems accelerated by both
GPUs and Intel MIC.

To overcome the aforementioned three limitations, we in-
troduce a directive-based intra-node programming model,
open many-core (OpenMC), towards simplifying program-
ming for heterogeneous compute nodes, especially those used
in the Milky Way-2 supercomputers. OpenMC provides a uni-
fied abstraction of the hardware resources in a compute node
as workers, where a worker can be a single multi-core device
or a subset of its cores if this is permitted. It facilitates the ex-
ploitation of asynchronous task parallelism on the workers.
As a result, OpenMC allows different types of devices to be
utilized in a uniform and flexible fashion.

As shown in Fig. 5, OpenMC provides two levels of ab-
straction for the “software” running on the “hardware”. All
the hardware resources in a compute node are available to an
OpenMC program as a group of workers at the logical level.
The tasks in an OpenMC program are organized at the soft-
ware level in terms of a master thread, asynchronously ex-
ecuting agents that are dynamically spawned by the master
(to run in slave threads) and accs (or accelerator regions) of-
floaded to workers from an agent. All the tasks between two
consecutive global synchronization points will run in paral-
lel unless their dependencies are explicitly annotated by pro-

grammers.
acc
200 acc
Software | Master
))
gent

Logical ’ Worker] [Workerl [Worker] [Worker] [Workerl

Hardware Compute node l

Fig.5 Execution model of OpenMC

352 Front. Comput. Sci., 2014, 8(3): 345-356

Essentially, OpenMC memory model is similar to those
adopted by existing ones such as OpenACC [8] and
OpenHMPP [10]. In an OpenMC program, the serial code
in an agent runs on the host, where the master thread runs.
As a result, their program states are mutually visible. How-
ever, programmers are able to create agent-private copies for
certain variables, e.g., loop variables, for a particular agent.

The cores in a worker share the same memory space. If two
workers have different memory spaces, then data movement
between the two spaces is either annotated by programmers
or deduced by compiler. An agent is responsible for manag-
ing data communication and synchronization required by its
accs.

3.6 Intelligent system administration

As shown in Fig. 6, the intelligent management system is
monitoring the whole system of MilkyWay-2, including the
hardware and the software.

Besides the traditional monitoring functions, the system
implement the error monitoring and the intelligent fault man-
agement. The system provides real-time error probing, pre-
cise fault diagnosis and in-time maintenance hint. The er-
ror probing is separated into the hardware part and the soft-
ware part. The hardware error is collected by the customized
hardware error monitoring facilities. The software error is di-
gested by the OS kernel and the driver hooks. All errors are
analyzed by a scalable fault management framework, which
supports the evolution of the diagnosis ability and provides
precise predictions of fault infection areas and infecting job
list. Meanwhile, the system simplifies the maintenance pro-
cess, thus expanding the system usability.

The key of fault management is managing the life cycle

of all faults automatically and minimizing the cost of each
stage, including fault detection, fault diagnosis, fault isola-
tion, and task recovery. That is, the system makes the super-
computer to be self-managed, which is also defined as au-
tonomous management. The system implements the follow-
ing five autonomous features for fault management:

e Self-awareness: the supercomputer can be aware of the
execution status and detect faults automatically.

o Self-diagnosis: the supercomputer can analyze the errors
and locate the root cause of the errors automatically.

e Self-healing: the supercomputer can isolate the faulty
hardware, reconfigure itself, and preserve high execution ef-
ficiency automatically.

e Self-protection: the supercomputer can protect the tasks
running on it from the impact of faults automatically.

e Self-evolution: the supercomputer managing capability
can be improved with more and more experiences gathered
during system managing.

By autonomous management, our system greatly reduces
the overhead of fault management. Therefore, it increases the
usability and reliability of computer systems. In MilkyWay-2
supercomputer, our system speeds up the efficiency of fault
management by two orders of magnitude.

In addition, our system is a general autonomous manage-
ment frame work that can be extended for a broad range of
computers beside supercomputers. We propose a self-similar
system architecture for our system, by which the system is
not sensitive the scale of target computer system. Moreover,
the functional model of our system is an open interface that
allows any developer to insert new function models such
that the system supports dynamical and seamless extension.
The architecture related and system specialized functions are

ey
rxis

Fig. 6 The GUI of intelligent management system

Xiangke LIAO et al.

confined into several models. Hence, the work for the trans-
plantation, extension, or upgrade of our system is minimized.
Besides this feature, the system can also support evaluative
function. The system becomes smarter based on ever increas-
ing knowledge gathered from normal days.

4 Benchmark evaluation
4.1 LINPACK benchmark

LINPACK is a widely recognized industry benchmark for
system-level performance of high-performance computing
systems. It solves a dense N - N system of linear equations
of the form Ax = b using parallel blocked LU decomposi-
tion method. With a problem size of N = 9 960 000 on the
124 racks of MilkyWay-2 system, a maximal performance of
33.86 PFLOPS is achieved, which corresponds to 62.16% of
the theoretical peak performance.

The LINPACK implementation running on MilkyWay-2 is
developed by Intel and delivered as massively parallel (MP)
LINPACK benchmark, which is based on modifications and
additions to high-performance LINPACK (HPL) 2.1 from in-
novative computing laboratories (ICL) at the University of
Tennessee, Knoxville. Based on MP LINPACK, we do lots
of performance tuning and optimization work to harness the
massive compute power of the whole system.

Table 1 shows the parameters used in MilkyWay-2 LI-
PACK benchmark evaluation in details. We run 31 744 MPI
processes as a two-dimention grid 248x128 on 15 872 com-
pute nodes. There are two processes on each node to leverage
the computer capacity of 2 Xeon CPUs and 3 Xeon Phi cards.
Each process uses one CPU as the host and 1.5 Xeon Phi
cards as the co-processors. The host is responsible to the ini-
tialization, controlling, communication and part of comput-
ing jobs. The co-processors deal with the majority of the com-
puting jobs including DGEMM and DTRSM level 3 BLAS
functions using the off-load mode.

One of the innovative optimization methods used in
MilkyWay-2 is the “panel broadcast algorithm dynamic
switching”. There are six broadcast algorithms in the HPL

MilkyWay-2 supercomputer: system and application 353

2.1, which are known as Iring, IringM, 2ring, 2ringM, long
and longM. The choice of the algorithm is related to the net-
work performance, the computer performance, the topology
of the network, etc. We observed that in the MilkyWay-2 sys-
tem the longM algorithm achieved higher performance at the
beginning loops, however dropped fast during the end phase.
The 1ringM algorithm showed the opposite trends, which be-
gan with lower performance and ended with flatter fluctua-
tion. So we made a switching point during the running of
LINPACK. Before that point longM algorithm is used, and
after that the broadcast algorithm is switched to 1ringM. The
experiment results show that at least 1.5% is achieved by this
optimization method.

The output of the LINPACK benchmark is shown in Fig.
7. The benchmark was completed in 19 452 seconds (about
five hours and 24 minutes), resulting in 33.86 PFLOPS and
passed the residual check.

4.2 Graph500

Graph500 was introduced in 2010 as a complement to the
TOP500 list. It aims to rank computers according to their
capability of processing data-intensive tasks. BFS has been
chosen as the primary benchmark for Graph500.

The performance of Graph500 benchmark is mainly af-
fected by memory access, communication and computation.
Therefore, we improve it from these aspects respectively. We
presented several software strategies to improve performance
of Graph500 benchmark on MilkyWay-2 from cost of mem-
ory access, communication and computation.

We evaluate the scalability of our algorithm on Milky Way-
2 by showing weak scaling, with 227 vertices per node,
shown in Fig. 8(a). With this form of weak scaling, the mem-
ory usage per node increases as the scale becomes larger.
It achieves good weak scaling as the size increases. The key
performance metric is the traversed edges per second (TEPS).
TEPS rate is proportional to nodes over the whole range of
sizes. Our algorithm achieves 206 148 billion TEPS on a
sub-system of MilkyWay-2 supercomputer with 8 192 nodes
(196 608 cores), which is about 6.8 X faster than top-down

Table 1 HPL parameters used in MilkyWay-2 LINPACK benchmark evaluation

Matrix size (N) 9960 000
Block size (NB) 1 008

Process mapping Column-major
Process grid (PxQ) 248x128
Panel factorization Crout
Recursive panel factorization Crout
NBMIN, NDIV 4,2

Panel broadcast longM & lringM

Look-ahead depth 1

Swap Binary-exchange
Matrix form L1:no-trans,U:no-trans
Equilibration No

Threshold 16.0

Alignment eight double precision words

354

T/U N NB P 0
WC15C2C4 9960000 1008 248 128

HPL_pdgesv() start time Mon Jun 3 00:25:03
HPL pdgesv() end time Mon Jun 3 05:49:16

Front. Comput. Sci., 2014, 8(3): 345-356

Time Gflops
19 452.04 3.386 27e+07
2013
2013
0.001 966 1 PASSED

Fig. 7 Output of LINPACK benchmark

algorithm [11] and is about 11.0 X faster than the 2D simple
hybrid algorithm [12].

Fig. 8(b) shows the results from a strong scaling test. In
contrast to weak scaling, the global problem size, i.e., the
number of vertices in a given graph, remains constant while
the number of processors increases. Therefore, the number
of local vertices assigned to each processor decreases as the
number of processors increases. We see that our algorithm
is about 6.7 X~7.6 X faster than the 2D top-down algorithm
[11], and is about 4.9 X~11.3 X faster than 2D simple hy-
brid algorithm [12]. Hence, our optimization improves per-
formance and scalability of hybrid BFS algorithm greatly.

10T

@

IT ¢

TEPS

100G3K(.30) 6K(31) 12K (32) 24K (33) 48K (34) 96K (35) 192K (36)

Cores (scale)
1 600 :

(b)
1300}

scale=32
1000 |

TEPS

700 ¢

400 . . .
12 24 48 96
#cores /K

192
Fig.8 Graph500 benchmark on MilkyWay-2. (a) Parallel weak scaling; (b)
Parallel strong scaling

5 Applications

5.1

Gyrokinetic toroidal gode

The gyrokinetic toroidal code (GTC) is a global, three-
dimensional particle-in-cell application developed to study

microturbulence in tokamak fusion devices. GTC is opti-
mized to use offload programming model for the Intel MIC
architecture, and is massively tested on MilkyWay-2. Table 2
and Fig. 9 show parts of the test results, where we vary the
number of used compute nodes, and run GTC on one MIC
card, two MIC cards, three MIC cards, or two CPUs respec-
tively. From Fig. 9, we can see GTC achieves linear scala-
bility for both CPU and MIC devices. Figure 10 shows the
performance comparison between MIC and CPU. The per-
formance ratio of a MIC card to 2 CPUs is between 0.61 and
0.65. The performance ratio of two MIC cards to two CPUs is
between 1.15 and 1.18. The performance ratio of three MIC
cards to 2 CPUs is between 1.62 and 1.67.

Table 2 Billion electrons pushed per second

. Nodes
Device
64 128 256 512 1024 2048
2CPUs/node 2.80 5.41 10.79 20.87 40.83 67.56
IMIC/node 1.72 342 6.79 13.49 24.92 41.87
2MICs/node 322 6.40 12.57 24.49 47.64 -
3MICs/node 4.54 9.01 17.74 - - -
E gg | <-2CPUs/node
B 60 & 1MIC/node
os 5ol 4 2MIC/node
E § 40} - 3MIC/node
S 300
o O
% o 20+
= 10+
m 0 L L L L
0 500 1 000 1500 2 000 2500

Numbers of nodes

Fig. 9 Weak scaling performance of GTC

1.8 1.62 1.67 1.64 O IMIC VS 2CPUs
Le6f @ 2MIC VS 2CPUs
1.4 m 3MIC VS 3CPUs
12k 1.17 1.17
o L
2 L0
8 0 8.
2 L. 0.65 0.62
«n 0.6 0.61
0.4+
0.2
64 128 256 512 1024 2048
Numbers of nodes
Fig. 10 Speedup of GTC on MIC

Xiangke LIAO et al.

5.2 Parallel molecular docking

Virtual high throughput screening (VHTS) is one established
computational method to identify drug candidates from large
collection of compound libraries, and thus accelerate the drug
discovery process [13—15]. Molecular docking puts small
compounds into the active site of drug target to evaluate the
binding affinity, and is a fairly valuable tool of VHTS due
to its good balance between speed and accuracy. We adapt a
modified version of DOCK®6.5 [16] to MilkyWay-2. 303 826
small compounds conformations from SPECS? are docked
to 1 100 potential drug targets from potential drug target
database (PDTD) [17] in parallel. Over 334 million docking
calculations are finished using ten thousands of CPU cores
in MilkyWay-2 within one week. The post docking analy-
sis combined with experimental assays would yield many hit
compounds against cancer, diabetes, infectious diseases and
etc.

5.3 Global atmosphere simulation

Large-scale simulation of the global atmosphere is one of
the most computationally challenging problems in scien-
tific computing. There is an urgent need for a highly scal-
able framework that fits well into state-of-the-art heteroge-
neous systems equipped with both processors and accelera-
tors. Among a variety of equation sets that are used to model
the global atmosphere, shallow-water equations exhibit most
of the essential dynamical characteristics of the atmosphere,
thus can be used as a test bed for the development of new al-
gorithms. On the Tianhe-1A, a peta-scalable CPU-GPU algo-
rithm was proposed to enable high-fidelity atmospheric sim-
ulation at extreme scales [18]. The hybrid algorithm has been
recently extended to MilkyWay-2. In the hybrid algorithm,
an adjustable partitioning method for arbitrary CPU-MIC ra-
tio is proposed to utilize equally and efficiently both CPU
and MIC. A novel “pipe-flow” communication scheme for
the cubed-sphere geometry is introduced to conduct balanced
and conflict-free message passing. Systematic optimizations
of both the CPU and MIC codes are done to achieve high
double-precision performance. In the single node test on the
MilkyWay-2, the MIC-to-CPU speedup for the 4 096 x 4 096
mesh is 1.18, 2.26 and 3.15 when one, two and three MICs
are utilized. Large scale tests indicate that the average perfor-
mance gained from SIMD vectorization on the MIC acceler-
ator is about 4.5 X. Thanks to the successful communication-
computation overlap, a nearly ideal weak-scaling efficiency
of 93.5% is obtained when we gradually increase the number

D http://www.specs.net
p P

MilkyWay-2 supercomputer: system and application 355

of nodes from six to 8 664 (nearly 1.7 million cores). In the
strong-scaling test, the parallel efficiency is about 77% when
the number of nodes increases from 1 536 to 8 664 for a fixed
65 664 x 65 664 x 6 mesh (the total number of unknowns is
77.6 billion).

6 Conclusions

The design of MilkyWay-2 system is driven by ambitious
aims: high performance, energy efficiency, high availabil-
ity, and user friendliness. MilkyWay-2 employs a propri-
etary high-speed communication network to connect neo-
heterogeneous nodes that integrate CPUs and MIC acceler-
ators, and yields impressive improvements in performance,
efficiency and usability. MilkyWay-2 system has been in-
stalled at NSCC-GZ, and will provide services for a wide
range of potential fields including basic science, major engi-
neering, industrial upgrading and information infrastructure
construction. For basic science, MilkyWay-2 can be applied
to many fundamental researches, such as universe science,
earth science, life science, nuclear science and etc. For ma-
jor engineering, MilkyWay-2 will be an important support-
ing platform for solving challenge issues in national major
engineering or projects, such as large aircrafts, oil explo-
ration, nuclear power station, genetic engineering and large-
scale equipment manufacturing. For industrial upgrading, the
system will drive the technological advancements in indus-
tries directly related to HPC like microelectronics, optical
communication and software development, and potentially
promote the innovation and reconstruction of industries in-
cluding automobile, shipbuilding, machinery manufacturing,
and electronics. For the construction of information infras-
tructure, MilkyWay-2, combined with cloud computing, can
provide the information infrastructure to support smart cities,
e-government affairs, and Internet-of-things applications. We
believe the full potential of MilkyWay-2 can be exploited to
produce a major impact on Chinese HPC industry and con-
tribute to the construction of an innovative country.

Acknowledgements This work was partially supported by the Na-
tional High-tech R&D Program of China (863 Program) (2012AA01A301),
and the National Natural Science Foundation of China (Grant No.
61120106005). The MilkyWay-2 project is a great team effort and benefits
from the cooperation of many individuals at NUDT. We thank all the people
who have contributed to the system in a variety of ways.

References

1. Yang X J, Liao X K, Lu K, Hu Q F, Song J Q, SuJ S. The Tianhe-1a su-

356

10.

11.

12.

13.

14.

15.

16.

17.

Front. Comput. Sci., 2014, 8(3): 345-356

percomputer: its hardware and software. Journal of Computer Science
and Technology, 2011, 26(3): 344-351

Zhang H, Wang K, Zhang J, Wu N, Dai Y. A fast and fair shared buffer
for high-radix router. Journal of Circuits, Systems, and Computers,
2013

Kirk D. Nvidia cuda software and GPU parallel computing architec-
ture. In: Proceedings of the 6th International Symposium on Memory
Management. 2007, 103-104

Sherlekar S. Tutorial: Intel many integrated core (MIC) architecture.
In: Proceedings of the 18th IEEE International Conference on Parallel
and Distributed Systems. 2012, 947

Gaster B, Howes L, Kaeli D R, Mistry P, Schaa D. Heterogeneous
Computing with OpenCL. Morgan Kaufmann Publishers Inc., 2011
Lee S, Vetter J S. Early evaluation of directive-based GPU program-
ming models for productive exascale computing. In: Proceedings of
the 2012 International Conference for High Performance Computing,
Networking, Storage and Analysis. 2012, 1-11

Wienke S, Springer P, Terboven C, Mey D. Openacc: first experiences
with real-world applications. In: Proceedings of the 18th International
Conference on Parallel Processing. 2012, 859-870

PGI Accelerator Compilers. Portland Group Inc, 2011

Yang X L, Tang T, Wang G B, Jia J, Xu X H. MPtoStream: an openMP
compiler for CPU-GPU heterogeneous parallel systems. Science China
Information Sciences, 2012, 55(9): 1961-1971

Dolbeau R, Bihan S, Bodin F. Hmpp: a hybrid multi-core parallel
programming environment. In: Proceedings of the 2007 Workshop on
General Purpose Processing on Graphics Processing Units. 2007, 1-5
Checconi F, Petrini F, Willcock J, Lumsdaine A, Choudhury A R, Sab-
harwal Y. Breaking the speed and scalability barriers for graph explo-
ration on distributed-memory machines. In: Proceedings of the 2012
International Conference for High Performance Computing, Network-
ing, Storage and Analysis. 2012, 1-12

Beamer S, Bulug A, Asanovic K, Patterson D. Distributed memory
breadth-first search revisited: enabling bottom-up search. In: Proceed-
ings of the 27th IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and PhD Forum. 2013, 1618-1627
Subramaniam S, Mehrotra M, Gupta D. Virtual high throughput
screening (VHIS)—a perspective. Bioinformation, 2007, 3(1): 14-17
Tanrikulu Y, Kriiger B, Proschak E. The holistic integration of virtual
screening in drug discovery. Drug Discovery Today, 2013, 18(7): 358—
364

Zhang X, Wong S E, Lightstone F C. Message passing interface and
multithreading hybrid for parallel molecular docking of large databases
on petascale high performance computing machines. Journal of Com-
putational Chemistry, 2013, 34(11): 915-927

Lang P T, Brozell S R, Mukherjee S, Pettersen E F, Meng E C, Thomas
V, Rizzo R C, Case D A, James T L, Kuntz I D. Dock 6: combin-
ing techniques to model RNA—small molecule complexes. RNA, 2009,
15(6): 1219-1230

Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X, Zhu W, Chen K, Wang
X, Jiang H. PDTD: a web-accessible protein database for drug target
identification. BMC Bioinformatics, 2008, 9(1): 104

Yang C, Xue W, FuH, Gan L, Li L, Xu Y, Lu Y, Sun J, Yang G, Zheng
W. A peta-scalable CPU-GPU algorithm for global atmospheric sim-
ulations. In: Proceedings of the 18th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming. 2013, 1-12

Xiangke Liao received the BS in com-
puter science from Tsinghua Univer-
sity, China and MS degree in computer
science from the National University of
Defense Technology (NUDT), China.
Currently he is a professor at NUDT.
His research interests include high per-

formance computing system, operating

system, parallel software. He is the chief designer of MilkyWay-2

system.

Liquan Xiao received his MS and
PhD in computer science from Na-
tional University of Defense Technol-
ogy (NUDT), China. Currently he is a
professor at the university. His research
interests include architecture of high
performance computing, high speed in-
terconnect network, system integration,

and power management. He is a deputy

chief designer of MilkyWay-2 supercomputer.

supercomputer.

Canqun Yang received his MS and
PhD in computer science from Na-
tional University of Defense Technol-
ogy (NUDT), China in 1995 and 2008,
respectively. Currently he is a profes-
sor at the university. His research in-
terests include programming languages
and compiler implementation. He is a

director designer of the MilkyWay-2

Yutong Lu received her MS and
PhD in computer science from Na-
tional University of Defense Technol-
ogy (NUDT), China. Currently she is a
professor at the university. Her research
interests include parallel system man-
agement, high speed communication,
distributed file systems, and advanced

programming environments with MPIL.

She is a director designer of MilkyWay-2 supercomputer.

