```
CLIPPING ON A RASTER DISPLAY
| Clipping:
    | Remove points outside a region of interest.
    | Discard (parts of) primitives outside of window
| Point clipping:
    | Remove points outside window.
    | A point is either entirely inside the region or not.
| Line clipping:
    | Remove portion of line segment outside window.
| Polygon clipping:
    | Remove portion of polygon outside window
2/8/2000
    CS4/57101 Lecture 7
    1
```


Role of Analytical Clipping

|| Floating-point packages
| clip then scan convert
\| Integer packages
| pre-clip and scan convert or
|| clip during scan conversion

- Common strategy

II clip lines and polygons analytically
I clip other primitives during scan conversion

2/8/2000

Analytic Clipping of Lines against

 Rectangles- Lines are always clipped to at most one line segment
\| Lines on rectangle border consider inside (displayed)

\| Clipping (End)points
| inside $x_{\text {min }}<=x<=x_{\text {max }}, y_{\text {min }}<=y<=y_{\text {max }}$
2/8/2000
CS 4/57101 Lecture 7

Computing Intersections

- Brute force

II intersect each line with 4 edges of clip rectangle
I need to solve for intersection point per edge
treat line and edge as infinite
solve for intersection
test if intersection is interior to line and edge
I each intersection involves solving 2 simultaneous equations and the interior test

2/8/2000
CS 4/57101 Lecture 7

Computing Intersections

- Could use slope-intercept formula

I really for infinite lines - does not handle vertical
II Use parametric form instead
II $x=x_{0}+t\left(x_{1}, x_{0}\right), y=y_{0}+t\left(y_{1}-y_{0}\right), \quad t$ in $[0,1]$

- solve for $t_{\text {edge }}$ and $t_{\text {line }}$
\| if both lie in $[0,1]$ then real intersection
II still need to test for lines parallel to clip rectangle edges
|| Still involves much calculation

2/8/2000
CS 4/57101 Lecture 7

Outcodes

|. Divide plane of clip rectangle into 9 regions

- Assign 4 bit code to each - each bit (1 or 0) indicates position wrt outside half-plane of clip edge
- Can calculate efficiently as sign bit of $\left(y_{\max }-y\right),\left(y-y_{\min }\right)$, $\left(x_{\max }-x\right),\left(x-x_{\min }\right)$

Cohen-Sutherland Procedures

| Compute outcodes of endpoints

- Check for trivial acceptance or rejection
. if neither
|| find outside endpoint
$\|$ test outcode to find edge crossed, compute intersection
l clip by replacing outside point by intersection
compute outcode of new endpoint

Cohen-Sutherland Algorithm

- Performs tests to avoid calculations
\| check for trivial acceptance
\| do region tests e.g. if both endpoints lie to left of rectangle trivially rejected etc.
\| if neither divide line segment in two at clip edge trivially reject one
\| continue comparing against each clip edge
- Efficient if clip rectangle large (almost all inside) or small (almost all outside) picking window

Cohen-Sutherland Procedures

- Consider endpoints of line segment
- Both outcodes 0000, line inside, trivially accept

Both in outside plane of same edge, trivially reject
\| if logical and of outcode not 0 trivially reject
|. If neither, subdivide at edge
\| throw away outside segment

- Convention : go top to bottom, right to left i.e. follow the bit order in the outcode
|. Outcode property: if bit set, line crosses edge $\|$ makes it easy to divide segment at edge

Cohen-Sutherland Procedure

- Efficiency
\| use bitwise arithmetic for outcodes
I do not recalculate slopes
|l Not most efficient
\| sometimes needless clipping e.g. clip line at clip line outside clip rectangle
|I Nicholl, Lee, Nicholl avoids this
- Advantage of Cohen-Sutherland
\| extension to 3D orthographic view volume straightforward

2/8/2000
CS 4/57101 Lecture 7

Sutherland-Hodgman Algorithm

- Clip polygon (convex or concave) against any convex clipping polygon
|| 3D: against convex polyhedral volumes defined by planes
\| Accepts a set of vertices
- Clips against a single infinite clip edge and outputs another series of vertices
\| Clips against next plane etc.
|| At each step 0, 1 or 2 vertices are added to output list
\| To test if point is inside, test sign of dot product of normal to clip boundary and the polygon edge
- For upright clip rectangle, sign of distance to boundary 2/8/2000 CS 4/57101 Lecture 7

Improvements and Generalizations

|. Can structure
|| so that it is reentrant
\| so no intermediate storage is required
\| Pass polygon through pipeline of clippers
I makes suitable for hardware implementation

