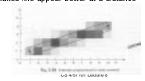

Aliasing and Antialiasing

- Aliasing: name given to jagged effect of lines
- I name comes from signal processing (see FvD Ch 14) ■ Jagged effect caused by finite size of pixels
 - I when change rows get step
- Increase resolution steps (jaggies) get less steep
 - I double resolution -> quadruple memory, bandwidth, and scan-conversion time


Unweighted Area Sampling

- Assume background white lines black
- Recognize that primitive has non-zero width ■ even thinnest line is 1 pixel thick
- Consider line as (thin) rectangle
- I covers different (square) pixels to different extent
- In most cases should not set a single pixel to black
 - Set intensity of pixel differently for each pixel covered
 - I Only horizontal and vertical lines effect only 1 pixel per row

Unweighted Area Sampling

- Simplest assumption on geometry of pixels
 - I nonoverlapping square tiles grey scale display
 - I line contributes to intensity proportional to area of pixel's tile covered
 - I pixel (2,1) is 70% black, (2,2) is 25% black
 - I makes line appear better at a distance

2/17/2000

Properties of Unweighted Area Sampling

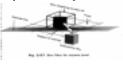
- 1. Intensity decreases with increasing distance from
- 2. Primitives do not influence pixel they do not intersect
- 3. Equal areas contribute equal intensity
 - I distance from pixel center to area overlapped
 - I small area in corner contributes same as equal-sized area in center

2/17/2000

CS 4/57101 Lecture 8

Weighted Area Sampling

- Change third property of *Unweighted Area Sampling* I areas closer to the pixel center contribute more
- Need to change "geometry" of pixel to preserve 2nd property
- I pixel is circle larger than square
- I if line intersects circle it contributes
- Terms weighted and unweighted come from idea of weighting function that determines effect of area dA on intensity of pixel

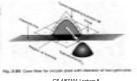

CS 4/57101 Lecture 8

2/17/2000

2/17/2000

Weighting Function: Unweighted Area Sampling

- Weighting Function W(x,y)
- I height at (x,y) gives weight for area dA at (x,y)
- I unweighted graph of W is box i.e. weight is constant
- I Intensity is $I_{max} \int_{Area of overlap} W(x,y) dA = I_{max} W_s$ where W_s is area of wedge



2/17/2000

CS 4/57101 Lecture 8

- Weighting Function W(x, y)
- I choose simplest graph with height proportional to distance
- graph of W is circular cone
- I choose radius as distance between pixel centers

2/17/2000 CS 4/57101 Lecture 8

Consequences of Weighting

- Pixels covered by line of width one not so bright
 not all *support* of weighting function covered
- Pixels that would not have received contribution do
- \blacksquare Pixel can have intensity I_{\max} if line is wide enough to cover support of W
- Contrast is decreased

2/17/2000

- Even horizontal and vertical lines influence more than 1 pixel per row
- Why rotational symmetry?
- I Simpler: calculation don't depend on angle of line
- Theoretically optimum

CS 4/57101 Lecture 8

Gupta-Sproull Antialiasing

- Precomputes the subvolume of a normalized filter function and stores them in a table
- Make pixel support circle of radius 1
- Line of units thickness intersects between 2 and 5 supports in a column, typically 3
- Original table gives for 4 bit display
- More bits more accuracy required in distance

2/17/2000 CS 4/57101 Lecture 8 9

Gupta-Sproull Antialiasing

- Can modify Bressenham's Algorithm
 - Still choose between E and NE pixels
 - I Now need to set intensity of pixel and 2 nearest neighbors
 - I can formulate as incremental algorithm
 - Other issues:
 - I need to antialiase the end points seperately
 - I lookup table applies only to line of one thickness
 - I more general discussion Foley & van Dam Ch.
 - I Characters: can filter 19.4 or manually soften

2/17/2000

CS 4/57101 Lecture 8

10