Classical Viewing

Objectives
• Introduce the classical views
• Compare and contrast image formation by computer with how images have been formed by architects, artists, and engineers
• Learn the benefits and drawbacks of each type of view

Classical Viewing
• Viewing requires three basic elements
 - One or more objects
 - A viewer with a projection surface
 - Projectors that go from the object(s) to the projection surface
• Classical views are based on the relationship among these elements
 - The viewer picks up the object and orients it how she would like to see it
• Each object is assumed to constructed from flat principal faces
 - Buildings, polyhedra, manufactured objects

Planar Geometric Projections
• Standard projections project onto a plane
• Projectors are lines that either
 - converge at a center of projection (COP)
 - are parallel
• Such projections preserve lines
 - but not necessarily angles
• Nonplanar projections are needed for applications such as map construction

Classical Projections
• Front elevation
• Elevation oblique
• Plan oblique
• Isometric
• One-point perspective
• Three-point perspective
Perspective vs Parallel

- Computer graphics treats all projections the same and implements them with a single pipeline
- Classical viewing developed different techniques for drawing each type of projection
- Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing

Taxonomy of Planar Geometric Projections

- Parallel
 - Multiview
 - Orthographic
 - Axonometric
 - Oblique
- Perspective
 - Isometric
 - Dimetric
 - Trimetric
 - 1 point
 - 2 point
 - 3 point
Orthographic Projection

Projectors are orthogonal to projection surface

Multiview Orthographic Projection

- Projection plane parallel to principal face
- Usually form front, top, side views

in CAD and architecture, we often display three multiviews plus isometric view

Advantages and Disadvantages

- Preserves both distances and angles
 - Shapes preserved
 - Can be used for measurements
 - Building plans
 - Manuals
- Cannot see what object really looks like because many surfaces hidden from view
 - Often we add the isometric

Axonometric Projections

Allow projection plane to move relative to object

classify by how many angles of a corner of a projected cube are the same or
no. of principal faces the projection plane is symmetric with respect to

none: trimetric
two: dimetric
three: isometric
Types of Axonometric Projections

- Dimetric
- Trimetric
- Isometric

Advantages and Disadvantages

- Lines are scaled (foreshortened) but can find scaling factors
- Lines preserved but angles are not
 - Projection of a circle in a plane not parallel to the projection plane is an ellipse
- Can see three principal faces of a box-like object
- Some optical illusions possible
 - Parallel lines appear to diverge
- Does not look real because far objects are scaled the same as near objects
- Used in CAD applications

Oblique Projection

Most General: Arbitrary relationship between projectors and projection plane

Advantages and Disadvantages

- Can pick the angles to emphasize a particular face
 - Architecture: plan oblique, elevation oblique
- Angles in faces parallel to projection plane are preserved while we can still see "around" side
- In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)
Perspective Projection

Projectors converge at center of projection

Vanishing Points

- Parallel lines (not parallel to the projection plane) on the object converge at a single point in the projection (the vanishing point)
- Drawing simple perspectives by hand uses these vanishing point(s)

Three-Point Perspective

- No principal face parallel to projection plane
- Three vanishing points for cube
Two-Point Perspective

• On principal direction parallel to projection plane
• Two vanishing points for cube

One-Point Perspective

• One principal face parallel to projection plane
• One vanishing point for cube
Advantages and Disadvantages

- Objects further from viewer are projected smaller than the same sized objects closer to the viewer (*diminution*)
 - Looks realistic
- Equal distances along a line are not projected into equal distances (*nonuniform foreshortening*)
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections (but not more difficult by computer)