Texture Mapping

Objectives
- Introduce Mapping Methods
 - Texture Mapping
 - Environmental Mapping
 - Bump Mapping
- Consider basic strategies
 - Forward vs backward mapping
 - Point sampling vs area averaging

The Limits of Geometric Modeling
- Although graphics cards can render over 10 million polygons per second, that number is insufficient for many phenomena
 - Clouds
 - Grass
 - Terrain
 - Skin

Modeling an Orange
- Consider the problem of modeling an orange (the fruit)
- Start with an orange-colored sphere
 - Too simple
- Replace sphere with a more complex shape
 - Does not capture surface characteristics (small dimples)
 - Takes too many polygons to model all the dimples

Modeling an Orange (2)
- Take a picture of a real orange, scan it, and "paste" onto simple geometric model
 - This process is texture mapping
- Still might not be sufficient because resulting surface will be smooth
 - Need to change local shape
 - Bump mapping
Three Types of Mapping

• Texture Mapping
 - Uses images to fill inside of polygons

• Environmental (reflection mapping)
 - Uses a picture of the environment for texture maps
 - Allows simulation of highly specular surfaces

• Bump mapping
 - Emulates altering normal vectors during the rendering process

Texture Mapping

geometric model texture mapped

Environment Mapping

Bump Mapping
Where does mapping take place?

• Mapping techniques are implemented at the end of the rendering pipeline
 - Very efficient because few polygons pass down the geometric pipeline

Is it simple?

• Although the idea is simple---map an image to a surface---there are 3 or 4 coordinate systems involved

Coordinate Systems

• Parametric coordinates
 - May be used to model curved surfaces
• Texture coordinates
 - Used to identify points in the image to be mapped
• World Coordinates
 - Conceptually, where the mapping takes place
• Screen Coordinates
 - Where the final image is really produced

Texture Mapping
Mapping Functions

- Basic problem is how to find the maps
- Consider mapping from texture coordinates to a point on a surface
- Appear to need three functions
 \[x = x(s, t) \]
 \[y = y(s, t) \]
 \[z = z(s, t) \]
- But we really want to go the other way

Backward Mapping

- We really want to go backwards
 - Given a pixel, we want to know to which point on an object it corresponds
 - Given a point on an object, we want to know to which point in the texture it corresponds
- Need a map of the form
 \[s = s(x, y, z) \]
 \[t = t(x, y, z) \]
- Such functions are difficult to find in general

Two-part mapping

- One solution to the mapping problem is to first map the texture to a simple intermediate surface
- Example: map to cylinder

Cylindrical Mapping

parametric cylinder

\[x = r \cos 2\pi u \]
\[y = r \sin 2\pi u \]
\[z = v/h \]

maps rectangle in \(u, v \) space to cylinder of radius \(r \) and height \(h \) in world coordinates

\[s = u \]
\[t = v \]

maps from texture space
Spherical Map

We can use a parametric sphere

\[
\begin{align*}
 x &= r \cos 2\pi u \\
 y &= r \sin 2\pi u \cos 2\pi v \\
 z &= r \sin 2\pi u \sin 2\pi v
\end{align*}
\]

in a similar manner to the cylinder but have to decide where to put the distortion

Ex: Mercator projection puts it at the poles

Spheres are used in environmental maps

Box Mapping

- Easy to use with simple orthographic projection
- Also used in environmental maps

Second Mapping

- Map from intermediate object to actual object
- Three possible strategies
 - Normals from intermediate to actual
 - Normals from actual to intermediate
 - Vectors from center of intermediate

Aliasing

- Point sampling of the texture can lead to aliasing errors
 - Miss blue stripes
 - Point samples in texture space
 - Point samples in u,v (or x,y,z) space
Area Averaging

A better but slower option is to use area averaging

Note that preimage of pixel is curved