
1

.

From Legion to Avaki:
The Persistence of Vision

Part 1

Based on slides by Lee, Hwang Jik
Supercomputing Lab, Yonsei University and from

University of Virginia

Andrew S. Grimshaw, Anand Natrajan
Marty A. Humphrey, Michael J. Lewis
Anh Nguyen-Tuong, John F. Karpovich

Mark M. Morgan, Adam J. Ferrari

2004-10-19 2

.

Introduction

Grids Are Here
Grid Architecture Requirements
Legion Principles and Philosophy
Using Legion in Day-to-Day Operations
The Legion Grid Architecture: Under the
Covers
Core Legion Objects
The Transformation From Legion to Avaki

2004-10-19 3

.

Grids Are Here
Avaki (Commercial ventures)

Has its roots in Legion, a Grid project at the
University of Virginia begun in 1993

The near future
No longer be executed on supercomputers and
single workstations using local data sources
=> Users will be presented the illusion of a single,
very powerful computer
The system will schedule application components
on processors, manage data transfer, and provide
communication and synchronization

2004-10-19 4

.

Grid Architecture Requirements

Definitions
Grid system

A collection of distributed resources
connected by a network

Grid application
Operates in a Grid environment or is “on” a
Grid system

Grid software
Facilitates writing Grid Applications and
manages the underlying Grid infrastructure

2

2004-10-19 5

.
Grid Architecture Requirements

Requirements (1/3)
Security: A Grid system must have mechanisms
that allow users and resource owners to select
policies that fit particular security and
performance needs
Global name space: All Grid objects must be able
to access any other Grid object transparently
without regard to location or replication
Fault tolerance: Hosts, networks, disks and
applications frequently fail, restart, disappear
and behave otherwise unexpectedly

2004-10-19 6

.

Grid Architecture Requirements
Requirements (2/3)

Accommodating heterogeneity: A Grid system
must support interoperability between
heterogeneous hardware and software platforms
Binary management: The underlying system
should keep track of executables and libraries,
knowing which ones are current
Multi-language support: Fortran or C
Scalability: The service demanded of any given
component must be independent of the number
of components in the system => distributed
systems principle
Persistence: I/O and the ability to read and
write persistent data are critical in order to
communicate between applications and to save
data

2004-10-19 7

.

Grid Architecture Requirements

Requirements (3/3)
Extensibility: Grid systems must be flexible
enough to satisfy current user demands and
unanticipated future needs => value-added
services
Site autonomy: For each resource the owner
must be able to limit or deny use by particular
users, specify when it can be used
Complexity management: Providing the
programmer and system administrator with clean
abstractions is critical to reducing the cognitive
burden

2004-10-19 8

.

Legion Principles and Philosophy
The Design principles and philosophy

Provide a single-system view
To reduce the complexity of the overall system and provides a
single namespace

Provide transparency as a means of hiding detail
Users and programmers should not have to know where an
object is located in order to use it

Provide flexible semantics
By default the user should not have to think about
plumbing or infrastructure
Reduce “activation energy”
Do not change host operating systems
Do not change network interfaces
Do not require Grids to run in privileged mode

Require Grid software to run with the lowest possible
privileges

3

2004-10-19 9

.
Using Legion in Day-to-Day Operations

A compute Grid and a data Grid of
Legion

Allowing processing power to be shared
A virtual single set of files that can be
accessed without regard to location or
platform

A typical scenario
A user sits down at a terminal,
authenticates to Legion (logs in) and runs
the command

legion_run my_application my_data
2004-10-19 10

.

Using Legion in Day-to-Day Operations

A typical scenario (cont.)
Determine the binaries available
Find and select a host on which to execute
my_application
Manage the secure transport of credentials
Interact with the local operating environment on
the selected host (SGE queue)
Create accounting records
Check to see if the current version of the
application has been installed
Move all of the data around as necessary
Return the results to the user

2004-10-19 11

.

Using Legion in Day-to-Day Operations
Key features

Global name space
Names everything: processors, applications, queues, data
files and directories

Wide-area access to data
All of the named entities are mapped into the local file
system directory structure of her workstation, making
access to the Grid transparent

Access to distributed and heterogeneous
computing resources – binary availabilty/versions
Single sign-on
Policy-based administration of the resource base
Accounting both for resource usage information
and auditing purposes
Find-grained security that protects both her
resources and those of others
Failure detection and recovery

2004-10-19 12

.

Creating and Administering a Legion Grid

Once a Grid is created, users can think of it as one
computer with one directory structure and one
batch processing protocol
Two administrative ways

As a single administrative domain: When all
resources on the Grid are owned or controlled
by single department or division
As a federation of multiple administrative
domains: When resources are part of multiple
administrative domains

Administrators define which of their resources are
made available to the Grid and who has access

4

2004-10-19 13

.
Creating and Administering a Legion Grid

Legion provides features for the
convenience of administrators

Monitoring load, idle time, etc
Add/remove resources
Dynamic reconfiguration based on policy
Logging
Collection of resource usage information

2004-10-19 14

.

Legion Data Grid

Concepts of Legion data Grid
Users access files by name – typically a
pathname in the Legion virtual directory
There is no need to know the physical location
of the files
How the data is accessed, and how the data is
included into the Grid

2004-10-19 15

.

Legion Data Grid
Data Access

DAP Access (a Legion-aware NFS server)
Provides a standards-based mechanism to access a
Legion Data Grid
Differences

It has no actual disk or file system behind it
It supports the Legion security mechanisms
It caches data aggressively

Can have DAP per site or per host
Command Line Access

A set of command line tools that mimic the Unix file
system commands such as ls, cat, etc -> legion_ls, etc

I/O Libraries
A set of I/O libraries that mimic that stdio libraries

2004-10-19 16

.

Legion Data Grid

Data Inclusion
“copy”

Copy of the file is made in the grid
“legion_cp” command

“container”
Copy of the file is made in a container on the grid
Reduces the overhead associated with having one
service per file

“share”
The data continues to reside on the original machine
“legion_export_dir” command starts a daemon that
maps a file or rooted directory in Unix or Windows NT

5

2004-10-19 17

.
Distributed Processing

In a typical network
The user must know where the file is, where the
application is, and whether the resources are
sufficient to complete the work

With Legion
Users have a single point of access to an entire
Grid
Users log in, define application parameters and
submit a program to run on available resources
Input data is read securely from distributed
sources without necessarily being copied to a
local disk

2004-10-19 18

.

Distributed Processing
Automated Resource Matching and File Staging

Administrative controls and predefined policies
Matches applications with queues in different ways
Through access controls: a user and application may or
may not have access to a specific queue
Through matching of application requirements and host
characteristics: a specific operating system/library
Through prioritization: based on policies and load
conditions

Support for Legacy Applications – No Modification
Necessary

Applications can run anywhere at all on the Grid without
regard to location or platform as long as resources are
available that match the application’ needs

2004-10-19 19

.

Distributed Processing

Batch Processing – Queues and Scheduling
Users can execute applications interactively or
submit them to a queue
Queues

Shared processing power
Sequence jobs based on business priorities
Distribute jobs to available resources
Permit allocation of resources to groups of users

Administrator tasks
Monitor usage from anywhere on the network
Preempt jobs, re-prioritize and re-queue jobs
Establish policies based on time windows, load
conditions or job limits

2004-10-19 20

.

Security

Security of Legion
Designed in the Legion architecture and
implementation from the beginning
Authentication, authorization and data integrity

See references 7 and 9 in Chapter

6

2004-10-19 21

.
Automatic Failure Detection and Recovery

Fault-tolerant of Legion
If a computer goes down, Legion can migrate applications
to other computers based on predefined deployment
policies as long as resources are available that match
application requirements

Legion provides fat, transparent recovery from
outages

Hosts, jobs and queues automatically back up their
current state, enabling them to restart with minimal loss
of information

Systems can be reconfigured dynamically
Processing continues using other resources without
interrupting operations

Legion migrates jobs and files as needed
The job is automatically migrated to another host and
restarted

2004-10-19 22

.

The Legion Grid Architecture:
Under the Covers

Legion
An object-based system comprised of independent objects

Legion class interfaces
Interface Description Language (IDL)

CORBA IDL, MPL, BFS
Communication

Supported for parallel applications (MPI libraries)
Supports cross-platform, cross-site MPI applications

All legion objects
Name, state (which may or may not persist), Meta-data
(<name, valueset> tuples) associated with their stat and an
interface
Similar to OGSA

2004-10-19 23

.

2004-10-19 24

.

7

2004-10-19 25

.

2004-10-19 26

.

2004-10-19 27

.

2004-10-19 28

.

8

2004-10-19 29

.

2004-10-19 30

.

2004-10-19 31

.

2004-10-19 32

.

9

2004-10-19 33

.

Secure communication
without trusted 3rd part

2004-10-19 34

.

2004-10-19 35

.

2004-10-19 36

.

10

2004-10-19 37

.

2004-10-19 38

.

2004-10-19 39

.

2004-10-19 40

.

11

2004-10-19 41

.

2004-10-19 42

.

Implementation Objects

Encapsulate Legion executables
Write-once, read-many
Typically contain code for single platform
May be Java byte code, Perl scripts, or HLL that
requires compilation
Maintain a set of attributes

Type of executable, machine requirements, performance
charactistics

Class objects maintain list of acceptable implementa
tion objects
Allows multiple implementation with different time/
space trade-offs

2004-10-19 43

.

Implementation Caches

Aviod storage & comm costs by caching implementai
on
Host object invoke cache objects to download imple
mentation
If Cache object does not have, it downloads and cac
hes
Invalidation of old versions easy

Class objects specify LOID of implementation
Need only change list of binaries
Future invocations will specify new binaries
Old versions will time out and be deleted from cache

2004-10-19 44

.

Legion to Avaki

Legion began 1993 – determining requirements, desi
gning architecture, coding
First funding and code 1996
1997 first deployment

Initially difficult to maintain MTBF > 20 hrs due to peculiar
failure modes
By Nov 1998 MTBF > 1 month

Always intended to move the software into mainstre
am with commercial support

2001 Avaki raised capital and relesase Avaki
Hardened, trimmed-down, commercially focussed version

12

2004-10-19 45

.
Avaki today

Grid paradigm useful for dynamic business environm
ent where companies regularly merge

May be geographically distributed, have heterogeneous arc
hitectures, require unified secure access

What has changed from Legion to Avaki
Eliminates more esoteric features and functions

2D files, heterogeneous MPI
Adds more stringent error-checking & recommends safer c
onfigurations
Increases usability through documentation, configuration
guidelines, extra tools

2004-10-19 46

.

Differences between Avaki & OGSA

RPC model
Avaki intends to address by becoming Web Services
compliant i.e supporting XML/SOAP & WDSL

Naming model
OGSA names have no security information
Binding resolvers in OGSA are location and protocol
specific

No security model in OGSA

2004-10-19 47

.

2004-10-19 48

.

13

2004-10-19 49

.

2004-10-19 50

.

2004-10-19 51

.

2004-10-19 52

.

14

2004-10-19 53

.

2004-10-19 54

.

2004-10-19 55

.

2004-10-19 56

.

15

2004-10-19 57

.

2004-10-19 58

.

2004-10-19 59

.

2004-10-19 60

.

16

2004-10-19 61

.

2004-10-19 62

.

2004-10-19 63

.

2004-10-19 64

.

17

2004-10-19 65

.

2004-10-19 66

.

2004-10-19 67

.

2004-10-19 68

.

18

2004-10-19 69

.

2004-10-19 70

.

2004-10-19 71

.

