intel"

Multi-core Programming
Evolution

Based on slides from Intel Software College

and

Multi-Core Programming —

increasing performance through software multi-threading
by Shameem Akhter and Jason Roberts,

Software

Evolution of Multi-Core Technology
threading
HT

Multi-core
Technology

2008/1/17 2

Formal Definition of Threads, Processors,
and Hyper-Threading in Terms of Resources

Thread

— Basic unit of CPU utilization

— Program counter, CPU state information, stack
Processor

— Architecture state: general purpose CPU registers, interrupt controller
registers, caches, buses, execution units, branch prediction logic

Logical Processor

— Duplicates the architecture space of processor

— Execution can be shared among different processors
HyperThreading

— Intel version of Simultaneous Multi-Threading (SMT)

— Makes single physical processor appear as multiple logical processors
— OS can schedule to logical processors

2008/1/17 3

HyperThreading and Multicore

e HyperThreading

— Instructions from logical processors are persistent and execute on
shared execution resources

— Up to microarchitecture how and when to interleave the instructions
— When one thread stalls, another can proceed
« This includes cache misses, and branch mispredictions
e Multicore
— Chip multiprocessing
= 2 or more execution cores in a single processor
= 2 or more processors on a single die
= Can share an on-chip cache
= Can be combined with SMT

2008/1/717 4

- Single Processor = Multiprocessor

2008/1/17 5

[cPusme | CPU State i CPU State
[Interrupt Legic | Interrupl Logic Interrupt Logic

Execufion

s Units

Units

Esxecution Exnculion
Units

H Cache

= Hyper-Threading e Multi-core Processor

2008/1/17 6

CPUSHEts || [CPUState
Intermupt Logic | | [[ntemmapt Logic
i

[Execution Unisz | | | Exscution Unis |

Cache

Multicore Shared Cache

CPU State
Intermupt Logic

Cache

= Multicore with HypeThreading Technology

2008/1/17 7

Defining Multi-Core Technology

Interrupt Logic Interrupt Logic

CPU State (CPU State

Execution Execution
. Cache . Cache
Units Units

Processor with Multi-Core Technology

200871717 8

Evolution to Dual Core

Basic Processor
Pipelined Execution
1 Instr. / Cycle

2008/1/17 9

Evolution to Dual Core

Superscalar
Parallel Functional Units

2008/1/17 10

Evolution to Dual Core

Dual Core

Double the transistors

2008/1/17 11

200871717 12

HT Technology and Dual-Core

APIC: Advanced Programmable Interrupt Controllers:
Solve interrupt routing efficiency issues in
multiprocessor computer systems.

2008/1/17 13

Hyper-Threading vs. Dual Core

I o I B T
lF' T— T = —ﬂ = = -
II..--..- -:----.II__..-.l. _-I.I-_\

o

2008/1/717 14

Driving Greater Parallelism

Normalized Performance vs. initial Intel® Pentium® 4 Processor

L/MUET-COR

IFCOR
|CE

2000

FORECAST

2008/1/17 15

Power Vs. Frequency

200871717 16

How HT Technology and Dual-Core Work

2008/1/17 17

Today? ... Multi-Core

Large Core

Small
Core

200871717 18

The Future?* ... Many-core

2008/1/17 19

Taking full advantage of Multi-Core requires
multi-threaded software

eIncreased responsiveness and worker productivity
— Increased application responsiveness when different tasks run in parallel

«Improved performance in parallel environments
— When running computations on multiple processors

More computation per cubic foot of data center
— Web-based apps are often multi-threaded by nature

200871717 20

10

Threading - the most common parallel technique

*0OS creates process for each program loaded
<Additional threads can be created within the

process
— Each thread has its own Stack and Instruction Pointer m
— All threads share code and data
— Single shared address space m
— Thread local storage if required

thread1()

Stack
IP

thread2() threadN()
Stack Stack
P P

2008/1/17 21

Application Application Application

Application Application

Switch Switch

200871717 22

11

Multi-Threading on Single-Core v Multi-Core

Optimal application performance on multi-core architectures will be
achieved by effectively using threads to partition software
workloads

— On single core, multi-threading can only be used to hide latency

* Ex: rather than block Ul when printing spawn a thread, free Ul
thread to respond to user

Multi-threaded applications running on multi-core platforms have
different design considerations than do multi-threaded applications
running on single-core platforms

— On single core can make assumptions to simplify writing and debugging

— These may not be valid on multi-core platforms e.g areas like memory

caching and thread priority

2008/1/17 23

Memory Caching Example

e Each core may have own cache
— May be out of sync
— Ex: 2 thread on dual-core reading and writing neighboring memory
locations
= Data values may be in same cache line because of data locality
= Memory system may mark the line as invalid due to write
« Result is cache miss even though the data in cache being read is
valid
— Not an issue on single-core since only one cache

200871717 24

12

Thread Priorities Example

= Applications with two threads of different priorities

— To improve performance developer assumes that higher thread will run
without interference from lower priority thread

— On single core valid since scheduler will not yield CPU to lower priority
thread

— On multi-core may schedule 2 threads on different cores, and they may
run simultaneously making code unstable

2008/1/17 25

13

