
1

Multi-core Programming
Evolution

Based on slides from Intel Software College
and

Multi-Core Programming –
increasing performance through software multi-threading

by Shameem Akhter and Jason Roberts,

2008/1/17 2

Evolution of Multi-Core Technology

Single-threading:
Only one task processes at one time.

Multitasking and Multithreading:
Two or more tasks execute at one time by
using content switching (Functionality)).

HT Technology:
Two single threads execute simultaneously
on the same processor core.

Multi-core Technology:
Computational work of an application is
divided and spread over multiple execution
cores (Performance).

Single-
threading

Multithreading

HT
Technology

Multi-core
Technology

Evolution of Multi-Core
Technology

2

2008/1/17 3

Formal Definition of Threads, Processors,
and Hyper-Threading in Terms of Resources

• Thread
– Basic unit of CPU utilization
– Program counter, CPU state information, stack

• Processor
– Architecture state: general purpose CPU registers, interrupt controller

registers, caches, buses, execution units, branch prediction logic

• Logical Processor
– Duplicates the architecture space of processor
– Execution can be shared among different processors

• HyperThreading
– Intel version of Simultaneous Multi-Threading (SMT)
– Makes single physical processor appear as multiple logical processors
– OS can schedule to logical processors

2008/1/17 4

HyperThreading and Multicore

• HyperThreading
– Instructions from logical processors are persistent and execute on

shared execution resources
– Up to microarchitecture how and when to interleave the instructions
– When one thread stalls, another can proceed

• This includes cache misses, and branch mispredictions

• Multicore
– Chip multiprocessing

• 2 or more execution cores in a single processor
• 2 or more processors on a single die
• Can share an on-chip cache
• Can be combined with SMT

3

2008/1/17 5

• Single Processor • Multiprocessor

2008/1/17 6

• Multi-core Processor• Hyper-Threading

4

2008/1/17 7

• Multicore Shared Cache

• Multicore with HypeThreading Technology

2008/1/17 8

Defining Multi-Core Technology

With Multi-core technology:

• Two or more complete computational
engines are placed in a single

processor.

• Computers split the computational
work of a threaded application and
spread it over multiple execution
cores.

• More tasks get completed in less time
increasing the performance and
responsiveness of the system.

CPU State

Interrupt Logic

CPU State

Interrupt Logic

Execution

Units
Cache

Execution

Units
Cache

Computational Work

Core 1 Core 2 Core 3

Computational Work Distributed Between
Multiple Cores

Processor with Multi-Core Technology

5

2008/1/17 9

Evolution to Dual Core

RegistersRegisters

++**

Basic Processor
Pipelined Execution

1 Instr. / Cycle

RegistersRegisters

++**

2008/1/17 10

Evolution to Dual Core

RegistersRegisters

++++

Superscalar
Parallel Functional Units

**

RegistersRegisters

++

RegistersRegisters

++++

**

**

6

2008/1/17 11

Evolution to Dual Core

RegistersRegisters

++**

RegistersRegisters

++**

Dual Core

RegistersRegisters

++

RegistersRegisters

++++

**

**

RegistersRegisters

++**

RegistersRegisters

++**

Double the transistors

2008/1/17 12

Scope

RegistersRegisters

++

RegistersRegisters

++++

**

**

RegistersRegisters

++**

RegistersRegisters

++**

Instruction Level – encoding/pipelined execution – increase
throughput

Instruction Level – scheduling, superscalar

Outermost Loops, whole program – data/functional

7

2008/1/17 13

HT Technology and Dual-Core

Execution
Core

Execution
Core

APICAPIC

Log.
Proc.
Log.
Proc.

APICAPIC

Log.
Proc.
Log.
Proc.

Execution
Core

Execution
Core

APICAPIC

Log.
Proc.
Log.
Proc.

APICAPIC

Log.
Proc.
Log.
Proc.

Execution
Core

Execution
Core

APICAPIC

Log.
Proc.
Log.
Proc.

APICAPIC

Log.
Proc.
Log.
Proc.

Dual Processors Processor w/ HT

System Bus

Execution
Core

Execution
Core

APICAPIC

Logical
Processor
Logical

Processor

APICAPIC

Logical
Processor
Logical

Processor

Execution
Core

Execution
Core

Execution
Core

Execution
Core

APICAPIC

Log.
Proc.
Log.
Proc.

APICAPIC

Log.
Proc.
Log.
Proc.

Execution
Core

Execution
Core

APICAPIC

Log.
Proc.
Log.
Proc.

APICAPIC

Log.
Proc.
Log.
Proc.

System Bus

DC-Processor DC and HT

APIC: Advanced Programmable Interrupt Controllers:
Solve interrupt routing efficiency issues in
multiprocessor computer systems.

2008/1/17 14

Hyper-Threading vs. Dual Core

Both threads without Multitasking or Hyper-Threading Technology:

Time

Both threads with MultiTasking Technology:

Time saved

Time saved

Both threads with Dual Core processors:

8

2008/1/17 15

Driving Greater Parallelism

20002000 2008+2008+

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce

Normalized Performance vs. initial Intel® Pentium® 4 Processor

10X10X

SINGLESINGLE--CORECORE
PERFORMANCEPERFORMANCE

DUAL/MULTIDUAL/MULTI--CORECORE
PERFORMANCEPERFORMANCE

20042004

3X3X

FORECAST

2008/1/17 16

Power Vs. Frequency

PP00 ~ f~ f22

4x Power
Increase

‘only’
2x

Core

Die/Socket

P ~ 4fP ~ 4f22 = 4P= 4P002f2f

P ~ 2fP ~ 2f22 = 2P= 2P00ff ff

ff P = 4PP = 4P00
ff

9

2008/1/17 17

How HT Technology and Dual-Core Work

Physical Physical
processor processor

corescores

Logical processors Logical processors
visible to OSvisible to OS

Physical processor Physical processor
resource allocationresource allocation ThroughputThroughput

TimeTime
Resource 1Resource 1

Resource 2Resource 2

Resource 3Resource 3

Thread 2Thread 2 Thread 1

Thread 2
Thread 2

Thread 1 Resource 1Resource 1

Resource 2Resource 2

Resource 3Resource 3

+

Thread 1

Thread 2Thread 2

Resource 1Resource 1

Resource 2Resource 2

Resource 3Resource 3
Resource 1Resource 1

Resource 2Resource 2

Resource 3Resource 3

+

2008/1/17 18

Today? … Multi-Core

C1 C2

C3 C4

Cache

Large Core

Cache

1

2

3

4

1

2
Small
Core 1 1

1

2

3

4

1

2

3

4

Power

Performance
Power = 1/4

Performance = 1/2

Multi-Core:
Power efficient

Better power and
thermal management

10

2008/1/17 19

GP GP

GP

GP GP

GP

GP

GP GP

GP

GP GP

General Purpose Cores

The Future?* … Many-core

SP SP

SP SP
Special Purpose HW

CC

CC

CC

CC

CC

CC

CC

CC Interconnect fabric

Heterogeneous Multi-Core Platform

2008/1/17 20

Taking full advantage of Multi-Core requires
multi-threaded software

•Increased responsiveness and worker productivity
– Increased application responsiveness when different tasks run in parallel

•Improved performance in parallel environments
– When running computations on multiple processors

•More computation per cubic foot of data center
– Web-based apps are often multi-threaded by nature

11

2008/1/17 21

Threading - the most common parallel technique

•OS creates process for each program loaded
•Additional threads can be created within the
process
– Each thread has its own Stack and Instruction Pointer
– All threads share code and data
– Single shared address space
– Thread local storage if required

…

Data
Code

thread2()
Stack

IP

threadN()
Stack

IP

Process

thread1()
Stack

IP

Contrast with Distributed address
parallelism: Message Passing

Interface (MPI)

2008/1/17 22

Parallel
Programs

Independent
Programs

Application Threads

Thread
Switch

Process
Switch

Application Application

Application

Application

Application

Threads allows one application to utilize
the power of multiple processors

12

2008/1/17 23

Multi-Threading on Single-Core v Multi-Core

• Optimal application performance on multi-core architectures will be
achieved by effectively using threads to partition software
workloads
– On single core, multi-threading can only be used to hide latency

• Ex: rather than block UI when printing spawn a thread, free UI
thread to respond to user

• Multi-threaded applications running on multi-core platforms have
different design considerations than do multi-threaded applications
running on single-core platforms
– On single core can make assumptions to simplify writing and debugging
– These may not be valid on multi-core platforms e.g areas like memory

caching and thread priority

2008/1/17 24

Memory Caching Example

• Each core may have own cache
– May be out of sync
– Ex: 2 thread on dual-core reading and writing neighboring memory

locations
• Data values may be in same cache line because of data locality
• Memory system may mark the line as invalid due to write
• Result is cache miss even though the data in cache being read is

valid
– Not an issue on single-core since only one cache

13

2008/1/17 25

Thread Priorities Example

• Applications with two threads of different priorities
– To improve performance developer assumes that higher thread will run

without interference from lower priority thread
– On single core valid since scheduler will not yield CPU to lower priority

thread
– On multi-core may schedule 2 threads on different cores, and they may

run simultaneously making code unstable

