Programming with POSIX* Threads
Based on slides from Intel Software College

and

Multi-Core Programming —

increasing performance through software multi-threading

by Shameem Akhter and Jason Roberts

Objectives

Explore Pthreads “core” functions to create and synchronize
threads

Programming with POSIX* Threads

What is Pthreads?

POSIX.1c standard
C language interface
Threads exist within same process

All threads are peers
= No explicit parent-child model
e Exception: “main thread” holds process information

pthread_create

int pthread create(tid, attr, function, arg);

pthread_t *tid

- handle of created thread

const pthread attr_t *attr
- attributes of thread to be created
void *(*function)(void *)
- function to be mapped to thread
void *arg

- single argument to function

Programming with POSIX* Threads

pthread_ create Explained

Spawn a thread running the function

Thread handle returned via pthread_t structure
« Specify NULL to use default attributes

Single argument sent to function
< If no arguments to function, specify NULL

Check error codes!

EAGAIN - insufficient resources to create thread
EINVAL - invalid attribute

Example: Thread Creation

#include <stdio.h>
#include <pthread.h>

void *hello (void * arg) {
printf(“Hello Thread\n™);
}

main() {
pthread t tid;

pthread create(&tid, NULL, hello, NULL);

What Happens?
(i)

Programming with POSIX* Threads

Waiting for a Thread

int pthread join(tid, val _ptr);

pthread_t tid
- handle of joinable thread
void **val ptr

- exit value returned by joined thread

pthread_join Explained

Calling thread waits for thread with handle tid to terminate
= Only one thread can be joined

 Thread must be joinable

Exit value is returned from joined thread

e Type returned is (void *)

e Use NULL if no return value expected

ESRCH - thread (pthread_t) not found
EINVAL - thread (pthread_t) not joinable

Programming with POSIX* Threads

Thread States

Pthreads threads have two states

< joinable and detached

Threads are joinable by default

e Resources are kept until pthread_join
= Can be reset with attributes or API call
Detached threads cannot be joined

* Resources can be reclaimed at termination
e Cannot reset to be joinable

Example: Multiple Threads

#include <stdio.h>
#include <pthread.h>
#define NUM_THREADS 4

void *hello (void *arg) {
printf(“Hello Thread\n™);

main() {
pthread t tid[NUM_THREADS];

for (int 1 = 0; 1 < NUM_THREADS; i++)

pthread create(&tid[i], NULL, hello, NULL);
for (int 1 = 0; 1 < NUM_THREADS; i1++)

pthread join(tid[i], NULL);

Programming with POSIX* Threads

What’s Wrong?

What is printed for myNum?

void *threadFunc(void *pArg) {

int* p = (int*)pArg;

int myNum = *p;

printf(“Thread number %d\n’’, myNum);
}

// from main():
for (int 1 = 0; 1 < numThreads; i++) {
pthread create(&tid[i], NULL, threadFunc, &i);

Solution — “Local” Storage

void *threadFunc(void *pArg)
{
int myNum = *((int*)pArg);
printf(“Thread number %d\n’’, myNum);

// from main():
for (int 1 = 0; 1 < numThreads; i1++) {
tNum[i] = 1;
pthread create(&tid[i1], NULL, threadFunc, &tNum[i]);

Programming with POSIX* Threads

