
1

Programming with POSIX* Threads
Based on slides from Intel Software College

and

Multi-Core Programming –

increasing performance through software multi-threading

by Shameem Akhter and Jason Roberts

2

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Objectives

Explore Pthreads “core” functions to create and synchronize
threads

2

3

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

What is Pthreads?

POSIX.1c standard

C language interface

Threads exist within same process

All threads are peers

• No explicit parent-child model

• Exception: “main thread” holds process information

4

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

pthread_create

int pthread_create(tid, attr, function, arg);

pthread_t *tid
• handle of created thread

const pthread_attr_t *attr
• attributes of thread to be created

void *(*function)(void *)
• function to be mapped to thread

void *arg
• single argument to function

3

5

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

pthread_create Explained

Spawn a thread running the function

Thread handle returned via pthread_t structure

• Specify NULL to use default attributes

Single argument sent to function

• If no arguments to function, specify NULL

Check error codes!

EAGAINEAGAIN -- insufficient resources to create threadinsufficient resources to create thread
EINVALEINVAL -- invalid attributeinvalid attribute

6

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Example: Thread Creation

#include <stdio.h>
#include <pthread.h>

void *hello (void * arg) {
printf(“Hello Thread\n”);

}

main() {
pthread_t tid;

pthread_create(&tid, NULL, hello, NULL);

}

What Happens?What Happens?

4

7

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Waiting for a Thread

int pthread_join(tid, val_ptr);

pthread_t tid

• handle of joinable thread

void **val_ptr

• exit value returned by joined thread

8

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

pthread_join Explained

Calling thread waits for thread with handle tid to terminate

• Only one thread can be joined

• Thread must be joinable

Exit value is returned from joined thread

• Type returned is (void *)

• Use NULL if no return value expected

ESRCH ESRCH -- thread (pthread_t) not foundthread (pthread_t) not found
EINVALEINVAL -- thread (pthread_t) not joinablethread (pthread_t) not joinable

5

9

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Thread States

Pthreads threads have two states

• joinable and detached

Threads are joinable by default

• Resources are kept until pthread_join

• Can be reset with attributes or API call

Detached threads cannot be joined

• Resources can be reclaimed at termination

• Cannot reset to be joinable

10

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Example: Multiple Threads

#include <stdio.h>
#include <pthread.h>
#define NUM_THREADS 4

void *hello (void *arg) {
printf(“Hello Thread\n”);

}

main() {
pthread_t tid[NUM_THREADS];
for (int i = 0; i < NUM_THREADS; i++)
pthread_create(&tid[i], NULL, hello, NULL);

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(tid[i], NULL);

}

6

11

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

What’s Wrong?

What is printed for myNum?

void *void *threadFunc(voidthreadFunc(void **pArg) {) {
intint* p = (* p = (intint*)*)pArgpArg;;
int myNum = *p;
printf(“Thread number %d\n”, myNum);

}}
.
// from main():// from main():
for (for (intint i = 0; i < i = 0; i < numThreadsnumThreads; i++) {; i++) {

pthread_create(&tid[ipthread_create(&tid[i], NULL,], NULL, threadFuncthreadFunc, &i);, &i);
}}

12

Copyright © 2006, Intel Corporation. All rights reserved.

Programming with POSIX* Threads

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries. *Other brands and names are the property of their respective owners.

Solution – “Local” Storage

void *void *threadFunc(voidthreadFunc(void **pArg))
{ {
int myNum = *(((intint*)*)pArgpArg));
printf(“Thread number %d\n”, myNum);

}}
.

// from main():// from main():
for (for (intint i = 0; i < i = 0; i < numThreadsnumThreads; i++) {; i++) {
tNum[itNum[i] = i;] = i;
pthread_create(&tid[ipthread_create(&tid[i], NULL,], NULL, threadFuncthreadFunc, , &&tNum[itNum[i]]););

}}

