COMPUTER NETWORKS CS 45201 CS 55201

CHAPTER 2

Data Link Networks

P. Farrell / H. Peyravi

Department of Computer Science Kent State University Kent, Ohio 44242 farrell@cs.kent.edu http://www.cs.kent.edu/~ peyravi

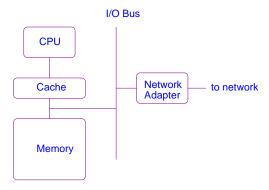
Fall 2001

Contents

- Hardware Building Blocks
- Encoding
- Coding Design
- Framing
- Error Detection
- Reliable Transmission
- Ethernet
- FDDI
- Network Adaptors

CS 4/55201: Computer Networks Fall 2001 CS 4/55201: Computer Networks Fall 2001

Chapter 2: Data Link Networks Hardware Building Blocks Chapter 2: Data Link Networks Hardware Building Blocks


Hardware Building Blocks

Network Connecting Problems

- Physical connection (coax, fiber, ...)
- Encoding/Decoding data bits.
- Framing, packets, messages.
- Error detection.
- Reliable delivery despite errors.
- Media Access Control (MAC).
 - → These issues are implemented in the network adaptor (board).
- ⇒ We will study the above problems in the context of
 - ► Point-to-Point links
 - ► Carrier Sense Multiple Access, CSMA networks (Ethernet)
 - ▶ Token Rings, Fiber Distributed Data Interface

Network Nodes

■ Assume a general-purpose (programmable) computer; with special-purpose hardware.

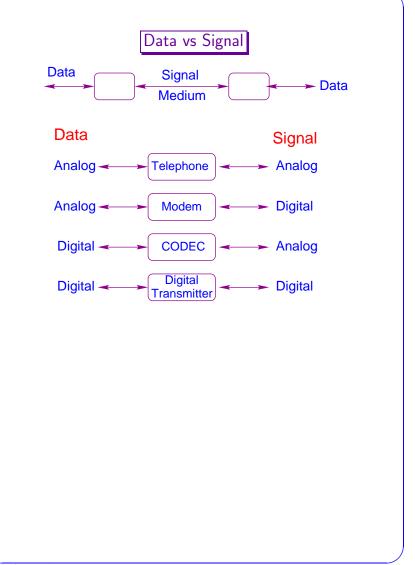
- A *device driver* manages the adaptor
- Finite memory (implies limited buffer space)
- Connects to network via a network adaptor
- Fast processor, slow memory

Chapter 2: Data Link Networks Hardware Building Blocks Chapter 2: Data Link Networks Hardware Building Blocks

Network Links

■ Links propagate signals

► Analog: continuous


▶ Digital: discrete

■ Binary data are *encoded* in to

► Analog signals: modulator (modem)

► Digital signals: demodulator

- A digital *transmitter* transmits binary data over a digital link.
- full duplex links
- half duplex links

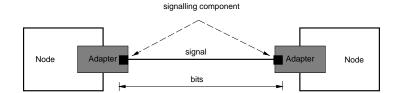
Chapter 2: Data Link Networks Hardware Building Blocks Chapter 2: Data Link Networks Encoding

Some Physical Medium

Туре	Speed	Distance
Category 5 twisted pair	10-100Mbps	100m
50-ohm coax (ThinNet)	10-100Mbps	200m
75-ohm coax (ThickNet)	10-100Mbps	500m
Multimode fiber	100Mbps	2km
Single-mode fiber	100-2400Mbps	40km

Can be leased or owned

Standard Links

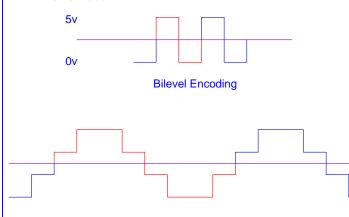

Type	Bandwidth	Applications		
ISDN	64 Kbps	for digital voice/data		
T1	1.544 Mbps	24 64Kbps, old technology		
T3	44.736 Mbps	30 T1		
STS-1	51.840 Mbps	sync. transfer signal optical		
STS-3	155.250 Mbps	for optical fiber		
STS-12	622.080 Mbps	for optical fiber		
STS-24	1.244160 Gbps	for optical fiber		
STS-48	2.488320 Gbps	for optical fiber		

- The device that encodes analog voice into digital ISDN link is called *CODEC* (coder/decoder).
- STS-N links are sometimes called OC-N (optical carrier).
- STS-N is used for *electrical* device connected to the link.
- OC-N is used for *optical* device connected to the link.

Encoding

Overview

- Signals propagate over a physical medium.
 - **▶** Digital signals
 - ► Analog signals
- Data can be either digital or analog; we're interested in digital data.
- Problem: Encode the binary data that the source node wants to send to the destination node into the signal that propagates over


Chapter 2: Data Link Networks Chapter 2: Data Link Networks Encoding

Maximum Data Rate of a Channel

▶ Nyquist (1924) stated that for a noise-free channel with bandwidth W(Hz), and multilevel signaling M, the capacity (bps) can be computed as

$$C = 2W \log_2 M$$

- ightharpoonup Doubling W doubles the data rate.
- ▶ The presence of noise can corrupt one or more bits. If data rate is increased, the bits become shorter, and more bits are affected by a given noise pattern.
- ▶ At a given noise level, the higher the data rate, the higher the error rate.

Multilevel Encoding (M=4)

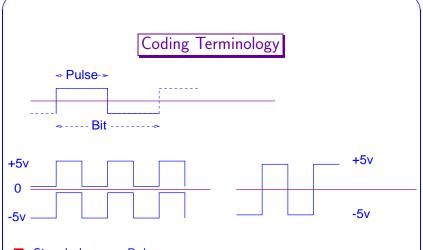
CS 4/55201: Computer Networks Fall 2001

Shannon's Theorem

- ► Shannon (1948) developed a formula to identify the upper bound on the channel capacity.
 - The signal-to-noise ratio (S/N) is the ratio of power in a signal to the power contained in the noise that is present at a particular point in the transmission.

$$S/N = 10 \log_{10} \frac{signal\ power}{noise\ power}$$

• The maximum channel capacity is computed as


$$C = B \log_2(1 + \frac{S}{N})$$

where C is the capacity in bits per second and B is the bandwidth in Hz.

- ► For example a noiseless 3-kHz channel cannot transmit binary signals at a rate exceeding 6000 bps.
- ▶ A channel of 3000-Hz bandwidth, and a signal to thermal noise of 30 dB can never transmit more than 30,000 bps.

$$= 30 \text{dB} = 10 \ \log_{10}(S/N)$$

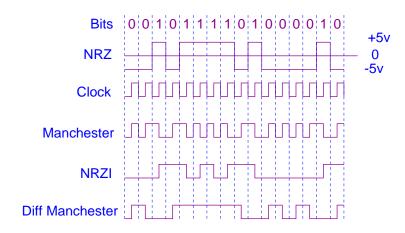
$$S/N = 1000$$

$$C = 3000 \ \log_2(1+1000) = 3000 \times 9.9673 < 30000 \text{bps}$$

Chapter 2: Data Link Networks Encoding Chapter 2: Data Link Networks

- Signal element: Pulse
- Modulation Rate: $\frac{1}{\text{Duration of the smallest element}}$ =Baud rate
- Data Rate: Bits per second
- Data Rate is a function of
 - ▶ bandwidth
 - ► signal/noise ratio
 - ▶ encoding technique

Transmission Media


- Twisted Pair
 - ► Unshielded Twisted Pair (UTP)
 - Voice Grade: Telephone wire
 - Data Grade: Better quality
 - ⇒ 100 Mbps over 50 m is possible
 - ► Shielded Twisted Pair (UTP)
- Coaxial Cable
- Optical Fiber
 - ► Modes:

 $index of reflection = \frac{Speed in vacuum}{Speed in medium}$

- ► Single mode
- ► Multimode

Chapter 2: Data Link Networks Coding Design Chapter 2: Data Link Networks Coding Design

Coding Design

- Non-Return to Zero (NRZ)
 - $ightharpoonup 1 = \text{high level}, \quad 0 = \text{low level}$
 - ► Problem: consecutive 1s or 0s ⇒ Unable to recover clock Uniform distribution of 1's and 0's tune the clocks
- Non-return to Zero Inverted (NRZI): Make a transition from the current signal to encode a one, and stay at the current signal to encode a zero; solves the problem of consecutive ones.
 - ightharpoonup 0 = no transition at beginning of interval (one bit at time)
 - ightharpoonup 1 = transition at beginning of interval

■ Manchester:

- ightharpoonup 0 = low to high
- ightharpoonup 1 = high to low

■ Differential Manchester

- ightharpoonup 1 = absence of transition
- ightharpoonup 0 = presence of transition

Always a transition in middle of interval \implies easy to synchronize

Chapter 2: Data Link Networks Framing Chapter 2: Data Link Networks Framing

Framing

Overview

- Problem: Breaking sequence of bits into a frame
 - ▶ Must determine first and last bit of the frame
 - ► Typically implemented by network adaptor
 - ► Adaptor fetches (deposits) frames out of (into) host memory

Byte-Oriented Protocols

- Sentinel Approach
 - ► BISYNC(binary sync. comm.)

8	8	8		8		8	16
SYN	SYN	SOH	Header	STX	Body	ETX	CRC

► IMP-IMP (ARPANET)

8	8	8	8	128		8	8	16	
SYN	SYN	DLE	STX	Header	Body	DLE	ETX	CRC	

- ▶ Problem: ETX character might appear in the data portion of the frame.
- ► Solution: Escape the ETX character with a DLE character in BISYNC; escape the DLE character with a DLE character in IMP-IMP.
- Byte Counting Approach (DDCMP)

8	8	8	14	42		16
SYN	SYN	Class	Count	Header	Body	CRC

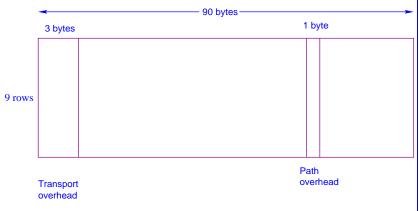
- ▶ Problem: Count field is corrupted (framing error).
- ► Solution: Catch when CRC fails.

Chapter 2: Data Link Networks Framing Chapter 2: Dat

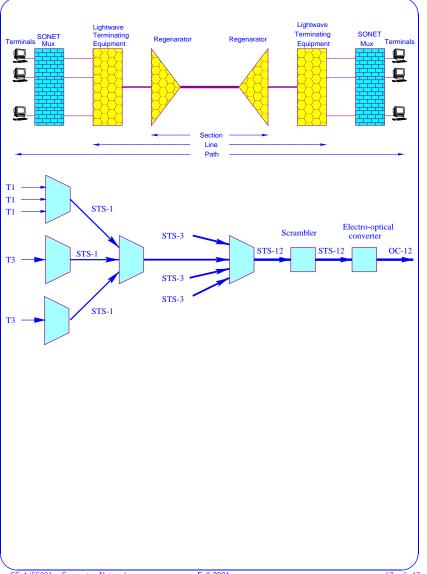
Bit-Oriented Protocols

- HDLC: High-Level Data Link Control (also SDLC and PPP)
- Delineate frame with a special bit-sequence: 01111110

8	16		16	8
Beginning Sequence	Header	Body	CRC	Ending Sequence


- Bit Stuffing
 - ► Sender: any time five consecutive 1s have been transmitted from the body of the message, insert a 0.
 - ▶ Receiver: should five consecutive 1s arrive, look at next bit(s):
 - if next bit is a 0: remove it
 - if next bits are 10: end-of-frame marker
 - if next bits are 11: error

Chapter 2: Data Link Networks Fra


Clock-Based Framing

- SONET: Synchronous Optical Network
- ITU standard for transmission over fiber
- STS-1 (51.84 Mbps)
- Byte-interleaved multiplexing
- **Each** frame is 125μ s long.

STS-1 Framce Structure

Chapter 2: Data Link Networks Framing Chapter 2: Data Link Networks Error Detection

Error Detection

- \blacksquare Let P_b be the probability that a bit is in error
- \blacksquare Let F be the frame size in bits

Probability[frame has no error] = $(1 - P_b)^F$

Probability[one or more bits in error] = $1 - (1 - P_b)^F$

Example: Let F=1000 bits and $P_b = 10^{-6}$

 $Pr[frame is in error] = 1 - (1 - 10^{-6})^1000 = 10^{-3}$

Parity Checks

0 1 2 3 4 5 6 7 1 0 1 1 0 1 1 C

Codeword

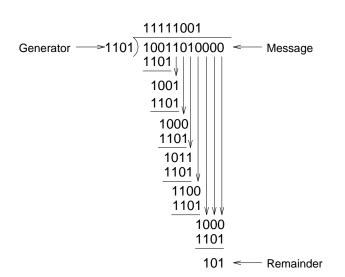
Odd parity $\boxed{1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} 1 \hspace{.1cm} 1 \hspace{.1cm} 0 \hspace{.1cm} } \hspace{.1cm} \# \hspace{.1cm}$ of 1's is odd

Even parity $\boxed{1} \boxed{0} \boxed{1} \boxed{1} \boxed{0} \boxed{1} \boxed{1} \boxed{1} \boxed{1} = \#$ of 1's is even

■ Single error can be detected

CS 4/55201: Computer Networks Fall 2001 17 of 47 CS 4/55201: Computer Networks Fall 2001 18 of 47

Chapter 2: Data Link Networks Error Detection Chapter 2: Data Link Networks Error Detection


Check Digit Method

- Make the number divisible by 9
- Example: 823 to be sent
 - 1. Left shift $823 \implies 8230$
 - 2. Divide by 9 and find remainder \implies 4
 - 3. Subtract remainder from $9 \implies 9-4=5$
 - 4. Add the result of step 4 to step 1:8235
 - 5. Check that the result is divisible by 9
- Detects all single-digit errors: 7235, 8335, 8255, 8237
- Detects several multiple-digit errors: 8765, 7346
- Does not detect some errors: 7335, 8775,
- Homework: Prove why it detects all single-digit errors

Cyclic Redundancy Check

- \blacksquare Add k bits of redundant data to an n-bit message.
- Represent *n*-bit message as an n-1 degree polynomial; e.g., MSG=10011010 corresponds to $M(x) = x^7 + x^4 + x^3 + x^1$.
- Let k be the degree of some divisor polynomial C(x); e.g., $C(x) = x^3 + x^2 + 1$.
- Transmit polynomial P(x) that is evenly divisible by C(x), and receive polynomial P(x) + E(x); E(x) = 0 implies no errors.
- Recipient divides (P(x) + E(x)) by C(x); the remainder will be zero in only two cases: E(x) was zero (i.e. there was no error), or E(x) is exactly divisible by C(x).
 - ightharpoonup Choose C(x) to make second case extremely rare.
- Sender:
 - ▶ multiply M(x) by x^k ; for our example, we get $x^{10} + x^7 + x^6 + x^4$ (10011010000):
 - \blacktriangleright divide result by C(x) (1101);
 - ► Send 10011010000 101 = 10011010101, since this must be exactly divisible by C(x);
- Want to ensure that C(x) does not divide evenly into polynomial E(x).

Chapter 2: Data Link Networks Error Detection Chapter 2: Data Link Networks Error Detection

■ What can be detected?

- ightharpoonup All single-bit errors, as long as the x^k and x^0 terms have non-zero coefficients.
- lacktriangle All double-bit errors, as long as C(x) has a factor with at least three terms.
- ▶ Any odd number of errors, as long as C(x) contains the factor (x+1).
- ► Any 'burst' error (i.e sequence of consecutive errored bits) for which the length of the burst is less than *k* bits.
- lacktriangle Most burst errors of larger than k bits can also be detected.

Common polynomials for C(x)

CRC	C(x)
CRC-8	$x^8 + x^2 + x^1 + 1$
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x^1 + 1$
CRC-12	$x^{12} + x^{11} + x^3 + x^2 + 1$
CRC-16	$x^{16} + x^{15} + x^2 + 1$
CRC-CCITT	$x^{16} + x^{12} + x^5 + 1$
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{12}$
	$x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

■ Ethernet and FDDI use CRC-32

Two-Dimensional Parity

0	1	2	3	4	5	6	7	
0	1	0	1	0	0	1	1	\leftarrow parity bit
1	1	0	1	0	0	1	0	
1	0	1	1	1	1	0	1	
0	0	0	1	1	1	0	1	
0	1	1	0	1	0	0	1	
1	0	1	1	1	1	1	0	

Parity byte 1 1 1 1 0 1 1 0

- 2D parity catches 1, 2, and 3-bit errors, and most 4-bit errors.
- Homework: Show this is true

Chapter 2: Data Link Networks Error Detection Chapter 2: Data Link Networks Reliable Transmission

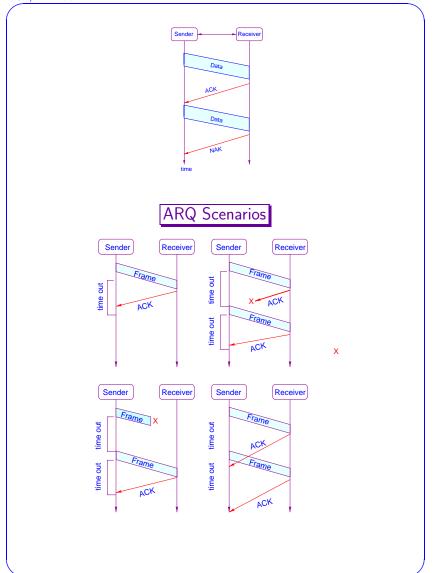
Internet Checksum Algorithm

- The third approach
- View message as a sequence of 16-bit integers.
- Add these integers together using 16-bit ones complement arithmetic, and then take the ones complement of the result.
- That 16-bit number is the checksum.
- Unlike CRC, it doesn't have very strong error detection property
- The algorithm is easier to implement

Reliable Transmission

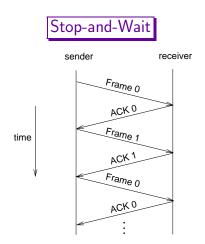
- Recover from corrupt frames
 - ► Error Correction Codes (ECC); also called Forward Error Correction (FEC)
 - ► Acknowledgments and Timeouts; also called Automatic Repeat request (ARQ)
- Delivers frames without errors, in proper order to network layer

Error Correction Mechanisms


- ACK/NAK: provide sender some feed-back about the other end
- Time-out: for the case when entire packet or ACK is lost
- Sequence numbers: to distinguish retransmissions

Automatic Repeat Request (ARQ)

- Error detection
- Acknowledgment
- Retransmission after timeout
- Negative acknowledgment

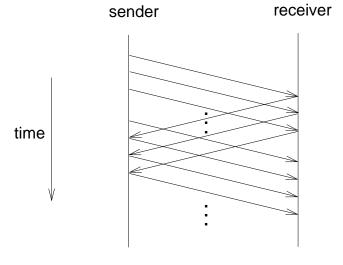

Chapter 2: Data Link Networks Reliable Transmission Chapter 2: Data Link Networks Reliable Transmission

25 of 47

Fall 2001

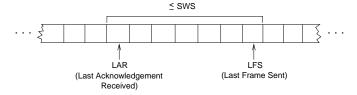
CS 4/55201: Computer Networks

Problem: Keeping the pipe full.


Example: 1.5Mbps link \times 45ms RTT = 67.5Kb (8KB). Assuming frame size of 1KB, stop-and-wait uses about one-eighth of the link's capacity. Want the sender to be able to transmit up to 8 frames before having to wait for an ACK.

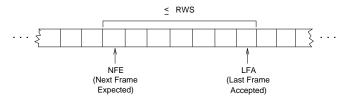
CS 4/55201: Computer Networks Fall 2001 26 of 47

Chapter 2: Data Link Networks Reliable Transmission Chapter 2: Data Link Networks Reliable Transmission


Sliding Window

Idea: Allow sender to transmit multiple frames before receiving an ACK, thereby keeping the pipe full. There is an upper limit on the number of outstanding (un-ACKed) frames allowed.

Sender:


- Assign sequence number to each frame (SeqNum)
- Maintain three state variables:
 - ▶ send window size (SWS)
 - ▶ last acknowledgment received (LAR)
 - ▶ last frame sent (LFS)
- \blacksquare Maintain invariant: LFS LAR \leq SWS

- When ACK arrives, advance LAR, thereby opening window
- Buffer up to SWS frames

Receiver:

- Maintain three state variables:
 - ► receive window size (RWS)
 - ▶ last frame acceptable (LFA)
 - ▶ next frame expected (NFE) or last frame received (LFR = NFE 1)
- Maintain invariant: LFA LFR \leq RWS or equivalently LFA NFE + 1 \leq RWS

- Frame SeqNum arrives:
 - ightharpoonup if NFE \leq SeqNum \leq LFA \longrightarrow accept
 - lacktriangleright if SeqNum < NFE or SeqNum > LFA \longrightarrow discarded
- Send cumulative ACK
- Variations
 - ► selective acknowledgements
 - ▶ negative acknowledgements (NAK)

Chapter 2: Data Link Networks Reliable Transmission

Sequence Number Space

- SeqNum field is finite; sequence numbers wrap around
- Sequence number space must be larger than number of outstanding frames
- SWS ≤ MaxSeqNum-1 is not sufficient
 - ► suppose 3-bit SeqNum field (0..7)
 - ► SWS=RWS=7
 - ▶ sender transmit frames 0..6
 - ▶ arrive successfully, but ACKs lost
 - ▶ sender retransmits 0...6
 - ▶ receiver expecting 7,0..5, but receives second incarnation of 0..5
- SWS < (MaxSeqNum+1)/2 is correct rule
- Intuitively, SeqNum "slides" between two halves of sequence number space

Chapter 2: Data Link Networks Reliable Transmission Chapter 2: Data Link Networks Etherne

Concurrent Logical Channels

- Multiplex several logical channels over a single point-to-point link; run stop-and-wait on each logical channel.
- Maintain three bits of state for each channel:
 - ▶ boolean saying whether the channel is currently busy
 - ▶ sequence number for frames sent on this logical channel
 - ▶ next sequence number to expect on this logical channel
- ARPANET supported eight logical channels over each ground link (16 over each satellite link).
- Header for each frame included a 3-bit channel number and a 1-bit sequence number, for a total of 4 bits; same number of bits as the sliding window protocol requires to support up to eight outstanding frames on the link.
- Separates reliability from *flow control* and *frame order*.

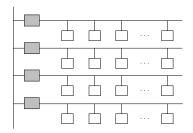
Ethernet

Overview

History

- ▶ Developed by Xerox PARC in mid-1970s
- ► Roots in Aloha packet-radio network
- ▶ Standardized by Xerox, DEC, and Intel in 1978
- ► Similar to IEEE 802.3 standard

■ CSMA/CD


- carrier sense
- ► multiple access
- ▶ collision detection
- Bandwidth: 10Mbps and 100Mbps
- Problem: Distributed algorithm that provides fair access to a shared medium

CS 4/55201: Computer Networks Fall 2001 31 of 47 CS 4/55201: Computer Networks Fall 2001 32 of 4

Chapter 2: Data Link Networks Ethernet Chapter 2: Data Link Networks Ethernet

Physical Properties

- Classical Ethernet (thick-net)
 - ▶ maximum segment of 500m
 - ▶ transceiver taps at least 2.5m apart
 - ► connect multiple segments with repeaters
 - ▶ no more than 2 repeaters between any pair of nodes (1500m total)
 - ▶ maximum of 1024 hosts
 - ▶ also called 10Base5

- Alternative technologies
 - ▶ 10Base2 (thin-net): 200m; daisy-chain configuration
 - ▶ 10BaseT (twisted-pair): 100m; star configuration

Addresses:

- Unique, 48-bit unicast address assigned to each adaptor
- Example: 8:0:2b:e4:b1:2
- Broadcast: all 1s
- Multicast: first bit is 1

Adaptor receives all frames; it accepts (passes to host):

- Frames addressed to its own unicast address
- Frames addressed to the broadcast address
- Frames addressed to any multicast address it has been programmed to accept
- All frames when in promiscuous mode

Chapter 2: Data Link Networks Ethernet Chapter 2: Data Link Networks Ethernet

Transmitter Algorithm

If line is idle:

- Send immediately
- Upper bound message size of 1500 bytes
- Must wait 51μ s between back-to-back frames

If line is busy:

- Wait until idle and transmit immediately
- Called 1-persistent (special case of p-persistent)

If collision:

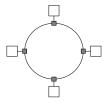
- jam for 512 bits, then stop transmitting frame
- minimum frame is 64 bytes (header + 46 bytes of data)
- delay and try again
 - \blacktriangleright 1st time: uniformly distributed between 0 and 51.2 $\mu\mathrm{s}$
 - \blacktriangleright 2nd time: uniformly distributed between 0 and 102.4 μ s
 - \blacktriangleright 3rd time: uniformly distributed between 0 and 204.8 μ s
 - ▶ give up after several tries (usually 16)
 - ► exponential backoff

Experiences

Observe in Practice

- 10-200 hosts (not 1024)
- Length shorter than 1500m (RTT closer to 5μ than 51μ)
- Packet length is bimodal
- High-level flow control and host performance limit load

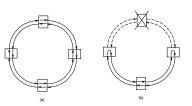
Recommendations

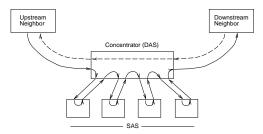

- Do not overload (30% utilization is about max)
- Implement controllers correctly
- Use large packets
- Get the rest of the system right (broadcast, retransmission)

Chapter 2: Data Link Networks FDDI Chapter 2: Data Link Networks FDDI

FDDI

Overview


- Token Ring Networks
 - ▶ PRONET: 10Mbps and 80 Mbps rings
 - ► IBM: 4Mbps token ring
 - ► 16Mbps IEEE 802.5/token ring
 - ▶ 100Mbps Fiber Distributed Data Interface (FDDI)


- Basic Idea
 - ▶ frames flow in one direction: upstream to downstream
 - ▶ special bit pattern (token) rotates around ring
 - ▶ must capture token before transmitting
 - ▶ release token after done transmitting
 - immediate release
 - delayed release
 - ▶ remove your frame when it comes back around
 - ▶ stations get round-robin service

Physical Properties of FDDI

Dual Ring Configuration

Single and Dual Attachment Stations

- Each station imposes a delay (e.g., 50ns)
- Maximum of 500 stations
- Upper limit of 100km (200km of fiber)
- Uses 4B/5B encoding
- Can be implemented over copper (CDDI)

Chapter 2: Data Link Networks FDDI Chapter 2: Data Link Networks FDDI

Timed Token Algorithm

- Token Holding Time (THT): upper limit on how long a station can hold the token.
- Token Rotation Time (TRT): how long it takes the token to traverse the ring.

 $\mathsf{TRT} \leq \mathsf{ActiveNodes} \times \mathsf{THT} + \mathsf{RingLatency}$

- Target Token Rotation Time (TTRT): agreed-upon upper bound on TRT.
- Algorithm
 - ► each node measures TRT between successive arrivals of the token
 - ▶ if measured TRT > TTRT, then token is late so don't send data
 - \blacktriangleright if measured TRT < TTRT, then token is early so OK to send data
 - ▶ define two classes of traffic
 - synchronous data: can always send
 - asynchronous data: can send only if token is early
 - ▶ worse case: 2×TTRT between seeing token
 - ▶ not possible to have back-to-back rotations that take 2×TTRT time

Token Maintenance

- Lost Token
 - ▶ no token when initializing ring
 - ▶ bit error corrupts token pattern
 - ▶ node holding token crashes
- Generating a Token (and agreeing on TTRT)
 - ▶ execute when join ring or suspect a failure
 - ► each node sends a special *claim frame* that includes the node's *bid* for the TTRT
 - ▶ when receive claim frame, update bid and forward
 - ▶ if your claim frame makes it all the way around the ring:
 - your bid was the lowest
 - everyone knows TTRT
 - you insert new token
- Monitoring for a Valid Token
 - ▶ should see valid transmission (frame or token) periodically
 - ightharpoonup maximum gap = ring latency + max frame ≤ 2.5 ms
 - ▶ set timer at 2.5ms and send claim frame if it fires

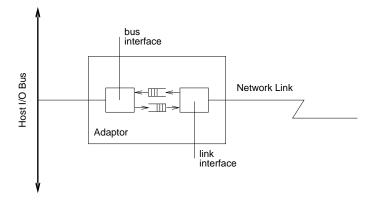
Chapter 2: Data Link Networks FDDI Chapter 2: Data Link Networks Network Adaptors

Frame Format

■ Control Field

- ▶ 1st bit: asynchronous (0) versus synchronous (1) data
- ▶ 2nd bit: 16-bit (0) versus 48-bit (1) addresses
- ▶ last 6 bits: demux key (includes reserved patterns for token and claim frame)

■ Status Field


- ▶ from receiver back to sender
- ▶ error in frame
- ► recognized address
- ► accepted frame (flow control)

Network Adaptors

Overview

Typically where data link functionality is implemented

- **■** Framing
- Error Detection
- Media Access Control (MAC)

Chapter 2: Data Link Networks

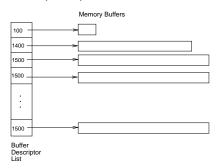
Network Adaptors

Chapter 2: Data Link Networks

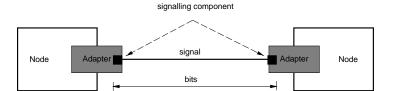
Network Adaptors

Host Perspective

Control Status Register (CSR)


- Available at some memory address
- CPU can read and write
- CPU instructs Adaptor (e.g., transmit)
- Adaptor informs CPU (e.g., receive error)

Example


```
LE_RINT 0x0400 Received packet Interrupt (RC)
LE_TINT 0x0200 Transmitted packet Interrupt (RC)
LE_IDON 0x0100 Initialization Done (RC)
LE_IENA 0x0040 Interrupt Enable (RW)
LE_INIT 0x0001 Initialize (RW1)
```

Moving Frames Between Host and Adaptor

Direct Memory Access (DMA)

Programmed I/O (PIO)

Chapter 2: Data Link Networks

Network Adaptors

Device Driver

```
Interrupt Handler
  interrupt_handler()
      disable_interrupts();
      /* some error occurred */
      if (csr & LE_ERR)
          print_and_clear_error();
      /* transmit interrupt */
      if (csr & LE_TINT)
          csr = LE_TINT | LE_INEA;
          semSignal(xmit_queue);
      /* receive interrupt */
      if (csr & LE_RINT)
          receive_interrupt();
      enable_interrupts();
      return(0);
```

```
Transmit Routine:
 transmit(Msg *msg)
      char *src, *dst;
      Context c;
      int len;
      semWait(xmit_queue);
      semWait(mutex);
      disable_interrupts();
      dst = next_xmit_buf();
      msgWalkInit(&c, msg);
      while ((src = msgWalk(&c, &len)) != 0)
          copy_data_to_lance(src, dst, len);
      msgWalkDone(&c);
      enable_interrupts();
      semSignal(mutex);
      return;
 }
```

Network Adaptors

Chapter 2: Data Link Networks

```
Receive Interrupt Routine
  receive_interrupt()
     Msg *msg, *new_msg;
     char *buf;
     while (rdl = next_rcv_desc())
         /* create process to handle this message */
         msg = rdl->msg;
         process_create(ethDemux, msg);
         /* msg eventually freed in ethDemux */
         /* now allocate a replacement */
         buf = msgConstructAllocate(new_msg, MTU);
         rdl->msg = new_msg;
         rdl->buf = buf;
         install_rcv_desc(rdl);
     return;
  }
```