COMPUTER NETWORKS CS 45201 CS 55201

CHAPTER 3
Switching and Forwarding

H. Peyravi

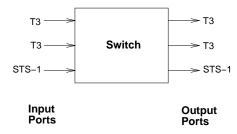
Department of Computer Science Kent State University Kent, Ohio 44242 peyravi@mcs.kent.edu http://mars.mcs.kent.edu/~ peyravi

Fall 2001

Contents

- Switching and Forwarding
- Routing
- Bridges and LAN switches
- Asynchronous Transfer Mode (ATM)
- Switching Hardware
- A Brief Summary of INs

CS 4/55201: Computer Networks Fall 2001 CS 4/55201: Computer Networks Fall 2001


Switching and Forwarding

Chapter 3: Switching and Forwarding

Switching and Forwarding

Scalable Networks

Switch: Forwards packets from input port to output port; port selected based on destination address in packet header.

- Can build networks that cover large geographic area
- Can build networks that support large numbers of hosts
- Can add new hosts without affecting performance of existing hosts

Routing Techniques Elements

■ Performance criterion

→ Number of hops ⇒ Distance \implies Speed ⇒ Delay

 \implies Cost

■ Decision time

⇒ Packet Session

■ Decision place

⇒ Distributed ⇒ Centralized

⇒ Source

Information sources

 \Rightarrow None

⇒ Local

→ Adjacent nodes

→ Nodes along route → All nodes

■ Routing strategy

 \implies Fixed

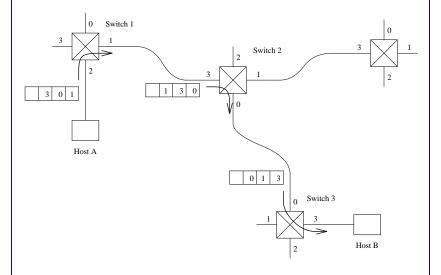
→ Adaptive

 \implies Random

⇒ Flooding

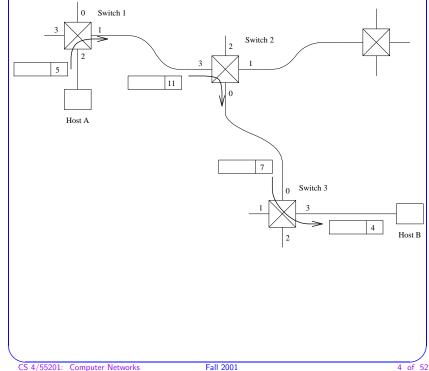
■ Adaptive routing update time

→ Continuous


→ Periodic

→ When topology changes

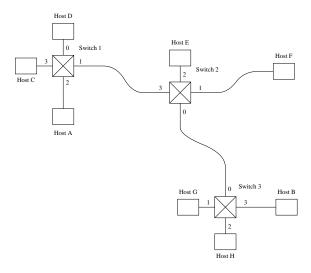
→ Major load changes


Source Routing

■ Address contains a sequence of ports on path from source to destination.

Virtual Circuit Switching

- Explicit connection setup (and tear-down) phase
- Subsequent packets follow same circuit
- Analogy: phone call
- Sometimes called *connection-oriented* model
- Each switch maintains a VC table.


Switching and Forwarding

Datagrams

■ No connection setup phase

Chapter 3: Switching and Forwarding

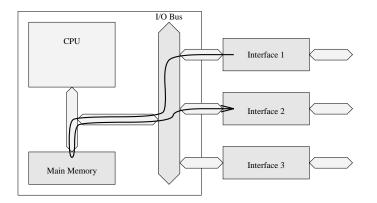
- Each packet forwarded independently
- Analogy: postal system
- Sometimes called *connectionless* model
- Each switch maintains a forwarding (routing) table

Virtual Circuit vs. Datagram

■ Virtual Circuit Model:

- ► Typically wait full RTT for connection setup before sending first data packet.
- ▶ While the connection request contains the full address for destination, each data packet contains only a small identifier, making the per-packet header overhead small.
- ▶ If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.
- ▶ Connection setup provides an opportunity to reserve resources.

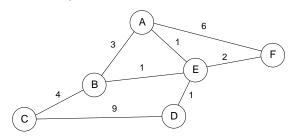
■ Datagram Model:


- ► There is no round trip time delay waiting for connection setup; a host can send data as soon as it is ready.
- ► Source host has no way of knowing if the network is capable of delivering a packet or if the destination host is even up.
- ➤ Since packets are treated independently, it is possible to route around link and node failures.
- ➤ Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model.

Switching and Forwarding

Chapter 3: Switching and Forwarding

Performance


Switches can be built from a general-purpose workstations; will consider special-purpose hardware later.

- Aggregate bandwidth
 - ▶ 1/2 of the I/O bus bandwidth
 - ▶ capacity is shared among all hosts connected to switch
 - ► Example: 800Mbps bus can support 8 T3 ports
- Packets-per-second
 - ► Must be able to switch small packets
 - ▶ 100,000 packets-per-second is an achievable number
 - ► Example: 64-byte packets implies 51.2Mbps

Routing

- Forwarding versus Routing
 - ► forwarding: selects an output port based on destination address and routing table
 - ▶ routing: process by which routing table is built
- Network as a Graph

- Problem: Find the lowest cost path between any two nodes
- Factors:

► Static: topology

▶ Dynamic: load

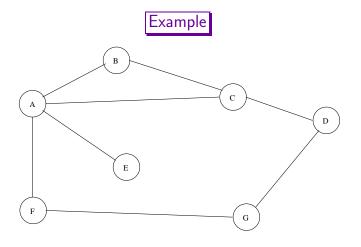
Chapter 3: Switching and Forwarding Routing Chapter 3: Switching and Forwarding Routing

- Interior Gateway Protocols (IGP)
- used for Intra-domain routing e.g. between routers within Kent campus
- Two major approaches
 - ▶ *Diatance Vector:* Each router sends a vector of distances to its neighbors. The vector contains distances to all nodes in the network
 - ► Example: RIP (Routing Information Protocol)
 - ► Link State: Each router sends a vector of distances to all nodes. The vector contains only distances to neighbors

 → newer method used in Internet
 - ► Example: OSPF (Open Shortest Path First)
- We will discuss RIP and OSPF later in Chapter 4 together with inter-domain routing using BGP

Distance Vector

■ Each node maintains a set of triples:


(Destination, Cost, NextHop)

- Each node sends updates to (and receives updates from) its directly connected neightbors
 - ▶ periodically (on the order of several seconds)
 - ▶ whenever its table changes (called *triggered* update)
- Each update is a list of pairs:

(Destination, Cost)

- Update local table if receive a "better" route
 - ▶ smaller cost
 - ▶ came from next-hop
- Refresh existing routes; delete if they time out
- How do you tell a node is down?
 - ▶ send test packet e.g. ping
 - ▶ don't see periodic update

Chapter 3: Switching and Forwarding Routing Chapter 3: Switching and Forwarding Routing

■ Routing table at node B

Destination	Cost	NextHop
Α	1	Α
С	1	C
D	2	C
E	2	Α
F	2	Α
G	3	Α

Routing Loops

■ Example 1

- ► F detects that link to G has failed
- ▶ F sets distance to G to infinity and sends update to A
- ▶ A sets distance to G to infinity since it uses F to reach G
- ▶ A receives periodic update from C with 2-hop path to G
- ▶ A sets distance to G to 3 and sends update to F
- ► F decides it can reach G in 4 hops via A

Example 2

- ► Link from A to E fails
- ► A advertises distance of infinity to E
- ▶ B and C advertise a distance of 2 to E
- ▶ B decides it can reach E in 3 hops; advertises this to A
- ▶ A decides it can reach E in 4 hops; advertises this to C
- ► C decides that it can reach E in 5 hops......

■ Heuristics to break routing loops

- ▶ set infinity to 16
- ▶ split horizon don't send back to origin i.e. don't send (E,2)
- ightharpoonup split horizon with poison reverse send (E,∞)
- ▶ only works for 2 node loops

Chapter 3: Switching and Forwarding Routing Chapter 3: Switching and Forwarding Routing Routin

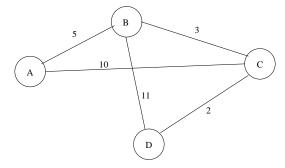
Link State

- Strategy: Send to all nodes (not just neighbors) information about directly connected links (not entire routing table).
- Link State Packet (LSP)
 - ▶ id of the node that created the LSP
 - ▶ cost of link to each directly connected neighbor
 - ▶ sequence number (SEQNO)
 - ▶ time-to-live (TTL) for this packet
- Reliable Flooding
 - ▶ store most recent LSP from each node
 - ▶ forward LSP to all nodes but one that sent it
 - ▶ generate new LSP periodically (hours) or on topology change; increment SEQNO
 - ▶ start SEQNO at 0 when reboot
 - ► decrement TTL of each stored LSP before flooding and also by "ageing"; reflood and discard when TTL=0

Route Calculation (in theory)

- Dijkstra's shortest path algorithm
- \blacksquare N denotes set of nodes in the graph
- \blacksquare l(i, j) denotes non-negative cost (weight) for edge (i, j)
- $s \in N$ denotes this node
- lacksquare M denotes the set of nodes incorporated so far
- lacksquare C(n) denotes cost of the path from s to node n

```
\begin{split} M &= \{s\} \\ \text{for each } n \text{ in } N - \{s\} \\ C(n) &= l(s,n) \\ \text{While } (N \neq M) \\ M &= M \text{ union } \{w\} \text{ such that } C(w) \\ \text{is the minimum for all } w \text{ in } (N-M) \\ \text{for each } n \text{ in } (N-M) \\ C(n) &= \text{MIN}(C(n), C(w) + l(w,n)) \end{split}
```


Route Calculation (in practice)

- Forward search algorithm
- Each switch maintains two lists:

Tentative and Confirmed

Each list contains a set of triples:

(Destination, Cost, NextHop)

- 1. Initialized Confirmed with entry for me; cost = 0.
- 2. For the node just added to Confirmed (call it Next) select its LSP.
- 3. For each Neighbor of Next, calculate the Cost to reach this Neighbor as the sum of the cost from me to Next and from Next to Neighbor.

- 3.1. If Neighbor is currently in neither Confirmed or Tentative, add (Neighbor, Cost, NextHop) to Tentative, where NextHop is the direction to reach Next.
- 3.2. If Neighbor is currently in Tentative and Cost is less that current cost for Neighbor, then replace current entry with (Neighbor, Cost, NextHop), where NextHop is the direction to reach Next.
- 4. If Tentative is empty, stop. Otherwise, pick entry from Tentative with the lowest cost, move it to Confirmed, and return to step 2.

Routing

Chapter 3: Switching and Forwarding

Metrics

■ Original ARPANET metric

▶ measured number of packets enqueued on each link

▶ took neither latency or bandwidth into consideration

■ New ARPANET metric

▶ stamp each incoming packet with its arrival time (AT)

► record departure time (DT)

▶ when link-level ACK arrives, compute

Delay = (DT - AT) + Transmit + Latency

▶ if timeout, reset DT to departure time for retransmission

▶ link cost = average delay over some time period

■ Problems with "New" metric

▶ under low load, static factors dominated cost; worked OK

▶ under high load, congested links had very hight costs; packets oscillated between congested and idle links

➤ range of costs too large; prefered path of 126 lightly loaded 56Kbps links to a 1-hop 9.6Kbps path

■ Revised ARPANET metric

▶ replaced delay measurement with link utilization

▶ average to surpress sudden changes

• compressed dynamic range (see Fig 4.21)

Step Confirmed Tentative

1. (D,0,-)

2. (D,0,-) (B,11,B) (C,2,C)

3. (D,0,-) (B,11,B) (C,2,C)

4. (D,0,-) (B,5,C) (C,2,C) (A,12,C)

5. (D,0,-) (A,12,C) (C,2,C) (B,5,C)

6. (D,0,-) (A,10,C) (C,2,C) (B,5,C)

7. (D,0,-) (C,2,C) (B,5,C) (A,10,C) Chapter 3: Switching and Forwarding Routing Chapter 3: Switching and Forwarding Bridges and LAN switches

 highly loaded link never has a cost more than 3 times its idle cost

- most expensive link only 7 times the cost of the least expensive
- high-speed satellite link more attractive than low-speed terrestrial link
- cost is a function of link utilization only at moderate to high loads.
- changes not instantaneous only notify changes when exceed threshold

Bridges and LAN switches

Bridges

- Simple Bridge: a node which accepts frames from an Ethernet (port) and forwards them on all other Ethernet (ports)
- Improvement would be to forward frames only to port with the destination host
- How does bridge get this information?
 - ► Human download
 - ► Learning Bridge: Bridge inspects source address in all frames knows which port host is on
 - ► Create table timeout entries in case host moved

Chapter 3: Switching and Forwarding Bridges and LAN switches Chapter 3: Switching and Forwarding Bridges and LAN switches

Spanning Tree Algorithm

- Problem: If use multiple learning bridges can get loops
- How get loop? Human error or for redundancy
- Solution: Distributed Spanning Tree Algorithm
- Can represent extended LAN as Graph.
- Spanning Tree is subgraph that covers all the vertices but with no cycles
- Theory:
 - ▶ pick bridge with lowest id as root it forwards all frames
 - ► Each bridge computes shortest path to root and uses port involved to forward towards root
 - ► Each LAN picks bridge closest to root

Practical Algorithm

- Exchange configuration messages containing
 - ▶ the id for the sending bridge
 - ▶ the id of what it believes is the root
 - ▶ distance in hops to root
- Bridge records the current best message on each port, adding one to distance to root
- Best if
 - ▶ root id is smaller or
 - ▶ root id equal but distance shorter or
 - ▶ both equal but sending bridge has lower id
- Bridge forwards rather than generates messages when realizes not root
- Bridge stops forwarding messages on port when it's not designated bridge for LAN
- Can extend spanning tree to prune multicasts not widely done.

Bridges and LAN switches

Chapter 3: Switching and Forwarding

Asynchronous Transfer Mode (ATM)

Limitations of Bridges

- Spanning Tree scales linearly
- Can only connect networks with same frame headers
- Congestion and dropped frames possible at bridges
- Latency and variability may increase
- Want to reduce broadcast traffic
 - ► VLAN virtual LAN: partition exetended LAN into multiple VLAN
 - ► Broadcast packets are only sent on ports that are in same VI AN
 - ► Adds VLAN header after Ethernet header to do this

Asynchronous Transfer Mode (ATM)

Overview

- Connection-oriented packet-switched network
- Used in both WAN and LAN settings
- Signalling (connection setup) Protocol: Q.2931
- Specified by ATM Forum
- Packets are called *cells*: 5-byte header + 48-byte payload
- Commonly transmitted over SONET (but not necessarily)

- Variable versus Fixed-Length
 - ▶ no optimal fixed-length
 - if small: high header-to-data overhead
 - if large: low utilization for small messages
 - ▶ fixed-length are easier to switch in hardware
 - simpler
 - enables parallelism

- Small size improves queue behavior
 - ▶ finer-grained pre-emption point for scheduling link
 - maximum packet = 4KB
 - link speed = 100Mbps
 - transmission time = $4096 \times 8/100 = 327.68 \mu s$
 - high priority packet may sit in the queue 327.68μ s
 - in contrast, $53 \times 8/100 = 4.24 \mu s$ for ATM
 - ▶ near cut-through behavior
 - two 4KB packets arrive at same time
 - link idle for 327.68μ s while both arrive
 - at end of 327.68 μ s, still have 8KB to transmit
 - in contrast, can transmit first cell after $4.24\mu s$
 - at end of 327.68 μ s, just over 4KB left in queue
- Carrying Voice in Cells
 - ▶ voice digitally encoded at 64Kbps (8-bit samples at 8KHz)
 - ▶ need full cell's worth of samples before sending cell
 - ▶ example: 1000-byte cells implies 125ms per cell (too long)
 - ▶ smaller latency implies no need for echo cancellors
- Settled on compromise of 48 bytes: (32+64)/2

Cell Format

■ User-Network Interface (UNI)

4	8	16	3	1	8	384 (48 bytes)
GFC	VPI	VCI	Туре	CLP	HEC(CRC-8)	Payload

- ▶ host-to-switch format
- ► GFC: Generic Flow Control (still being defined)
- ▶ VCI: Virtual Circuit Identifier
- ▶ VPI: Virtual Path Identifier
- ► Type: management, congestion control, AAL5 (later)
- ► CLP: Cell Loss Priority
- ► HEC: Header Error Check (CRC-8)
- Network-Network Interface (NNI)
 - ▶ switch-to-switch format
 - ▶ GFC becomes part of VPI field

AAL

ATM

AAL

ATM

■ Convergence Sublayer Protocol Data Unit (CS-PDU)

- ► CPI: common part indicator (version field)
- ▶ Btag/Etag: beginning and ending tag
- ▶ BAsize: hint on amount of buffer space to allocate
- ► Length: size of whole PDU
- Cell Format

40	2	4	10	352 (44 bytes)	6	10
ATM header	Туре	SEQ	MID	Payload	Length	CRC-10

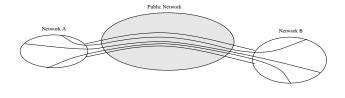
- **►** Type
 - BOM: beginning of message
 - COM: continuation of message
 - EOM: end of message
- ► SEQ: sequence number
- ► MID: message id
- \blacktriangleright Length: number of bytes of PDU in this cell

Segmentation and Reassembly

Asynchronous Transfer Mode (ATM)

Chapter 3: Switching and Forwarding

Asynchronous Transfer Mode (ATM)


AAL5

CS-PDU Format

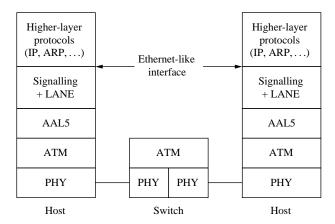
<64kB	0-47 bytes	16	16	32
Data	Pad	Reserved	Len	CRC-32

- ▶ pad so trailer always falls at end of ATM cell
- ► Length: size of PDU (data only)
- ► CRC-32 (detects missing or misordered cells)
- Cell Format
 - ▶ end-of-PDU bit in Type field of ATM header

- Host: treat as 24-bit circuit identifier
 - ▶ if cheap: one-per application; use for demultiplexing
 - ▶ if expensive: multiplex several applications onto one VCI
- Network: aggregate multiple circuits into one path

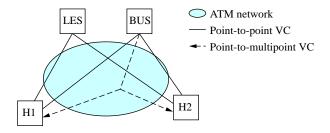
ATM in the LAN

- Originally WAN technology
- Adopted for LANs because
 - ▶ it was switched (as opposed to Ethernet which was shared),
 - ▶ fast (155Mbps and above),
 - ▶ lack of distance limitation
- Problem with implementing broadcast if don't know all node addresses and setup VCs to them
- Solution:
 - ► Redesign protocols e.g. ATMARP
 - ► LAN emulation (LANE) effectively shared media emulation


Fall 2001

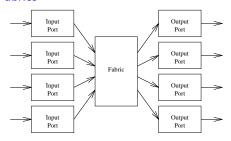
CS 4/55201: Computer Networks

32 of 52


LAN emulation

- Addresses: ATM address (used to establish VC), LANE MAC address, VCI
- LANE uses various servers and LAN emulation clients (LECs) hosts, routers, etc to make LANE layer appear like standard MAC layers to higher layers

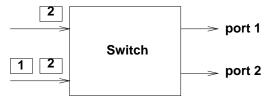
LANE uses:


- LANE configuration server (LECS): collects ATM addresses of clients, supplies MAC parameters (LES, type, MTU etc)
- LANE server (LES): clients register ATM/MAC addresses, gets addr of BUS
- broadcast and unknown server (BUS): maintains point-to-multipoint VC to all registered clients, delivers multicast packets and first unicast between clients, supplies ATM addr corresponding to MAC addr

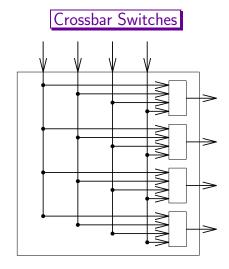
Switching Hardware

Overview

- Terminology: $n \times m$ switch has n inputs and m outputs
- Design Goals
 - ► throughput (depends on traffic model)
 - ightharpoonup scalability (a function of n)
- Ports and Fabrics


- ▶ ports
 - circuit management (e.g., map VCls, route datagrams)
 - buffering (input and/or output)
- ▶ fabric
 - as simple as possible
 - sometimes do buffering (internal)

Chapter 3: Switching and Forwarding

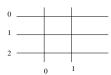

Switching Hardware

Buffering

- Wherever contention is possible
 - ▶ input port (contend for fabric)
 - ▶ internal (contend for output port)
 - ▶ output port (contend for link)
- Head-of-Line Blocking
 - ▶ input buffering

Switching Hardware

- lacksquare Crossbar switches are nonblocking and simple but with N^2 complexity.
- They have been used in small networks or as building blocks.
- Although it is nonblocking, in packet mode it becomes a blocking network.
- A queueing function is added to the crossbar to overcome this problem in three ways.
 - ► Input queueing
 - ► Output queueing
 - ► Crosspoint queueing

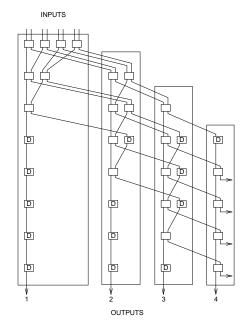


A 2 x 2 cros-bar

A representation for a 2 x 2 cross-bar

An example of 3 x 2 cross-bar

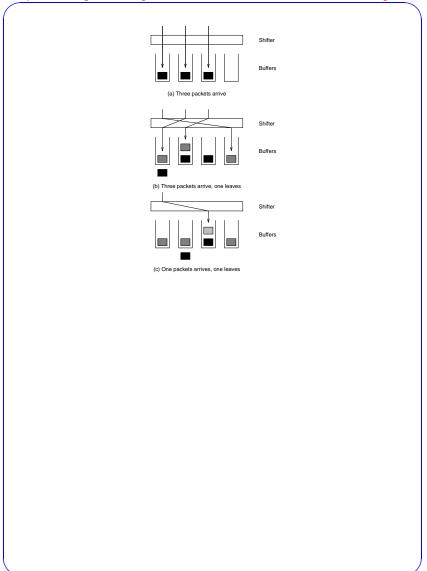
A graph representation of a 3 x 2 cross-bar


- A central controller sets up the cross-points and schedules the packet delivery. It is simple, but the central controller is the bottleneck.
- It is very expensive for large switch.
- Output queueing provides ideal performance.

Chapter 3: Switching and Forwarding Switching Hardware Chapter 3: Switching and Forwarding Switching Hardware Switching and Forwarding Switching Hardware

Knockout Switch

- It is designed for packet switching with fixed length (Knockout I) or variable length (Knockout II) packets.
- It uses one broadcast input bus for each input port to all output ports.
- Each output port has a bus interface that prevents contention on the bus and allows simultaneous packets to the same output port.
- Packet filters detect the address of each packet and implement the self routing function.
- When two packets arrive to a 2×2 switch, one is selected randomly.

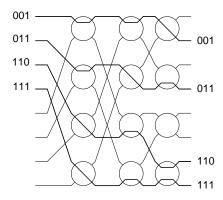

■ Example of Crossbar

- lacksquare Boxes with D introduce 1 bit delay to keep the competition synchronous.
- lacksquare Concentrator: select L of N packets
- lacksquare Complexity: N^2

Chapter 3: Switching and Forwarding Switching Hardware Chapter 3: Switching and Forwarding Switching Hardware Switching and Forwarding Switching Hardware

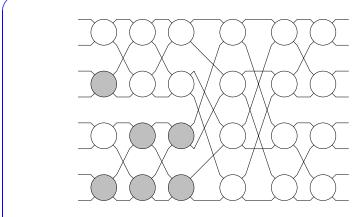
- Output Buffer
- \blacksquare The concentrator selects L packets and store them into a shared buffer based on their time of arrival.
- lacksquare Selecting L packets out of N contenders is analogous to a knockout tournament.
- For an $N \times L$ knockout concentrator, there are L rounds of competitions.

CS 4/55201: Computer Networks Fall 2001 39 of 52 CS 4/55201: Computer Networks Fall 2001 40 of 52

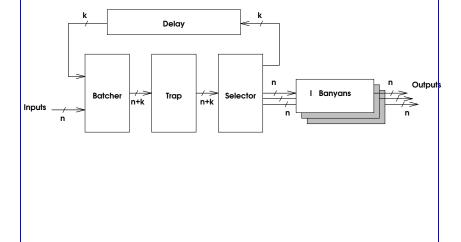

Switching Hardware

Chapter 3: Switching and Forwarding

Self-Routing Fabrics


■ Banyan Network

- ightharpoonup constructed from simple 2×2 switching elements
- ▶ self-routing header attached to each packet
- ▶ elements arranged to route based on this header
- ▶ no collisions if input packets sorted into ascending order
- ightharpoonup complexity: $n \log_2 n$



■ Batcher Network

- ▶ switching elements sort two numbers
 - some elements sort into ascending (clear)
 - some elements sort into descending (shaded)
- ▶ elements arranged to implement merge sort
- ightharpoonup complexity: $n \log_2^2 n$

- Common Design: Batcher-Banyan Switching Fabric
- Sunshine Switch

A Brief Summary of INs

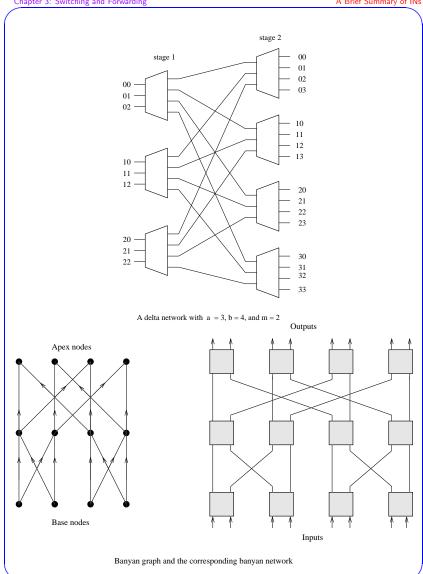
- Most INs have been designed for a particular applications, such as voice data, signaling, etc.
- Different applications need different bandwidth requirements.
- Circuit switching concept has evolved to handle stream-type traffic (voice, video), with fixed throughput and constant delay.
- Packet switching has evolved as an efficient way to transport communication traffic with the following property.
 - **▶** Buffering
 - ► Statistical multiplexing
 - ► Variable throughput
 - ► Variable delay
 - ▶ It supports both virtual circuit and datagram techniques.
 - ► Very attractive for applications with low throughput and low delay, (inquiry/response), and hight throughput and high delay (file transfer).
 - ▶ It is not suitable for real-time type traffic such as voice, video, and computer-to-computer data transfer.

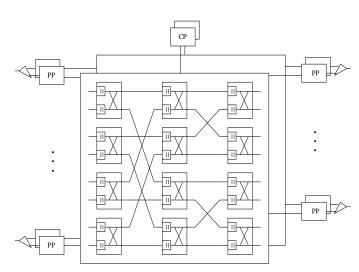
CS 4/55201: Computer Networks Fall 2001 43 of 52 CS 4/55201: Computer Networks Fall 2001 44 of 52

A Brief Summary of INs Chapter 3: Switching and Forwarding A Brief Summary of INs

- Many switching fabrics have been designed to satisfy high-performance requirements that include
 - ► High degree of parallelism
 - ▶ Distributed control

Chapter 3: Switching and Forwarding


- ► Routing function on hardware
- Fast packet switching can be classified based on their internal fabric structures that include
 - ► Buffered-based banyan fabrics
 - ► Sort-banyan-based fabrics
 - ► Fabrics with disjoint-path topology and output queueing
 - ► Crossbar-based fabrics
 - ► Time division fabrics with common packet memory
 - ► Fabrics with shared medium.


Banyan and Buffered Banyan Fabrics

- Banyan is a rich class that include regular and rectangular banyan networks, and delta networks.
- A $N = b^k$ delta network with self-routing property (*delta-b*) is constructed with k stages of of identical $b \times b$ switching elements.
- Many of the well-known INs such as omega, flip, cube, shuffle-exchange, and baseline belong to the class of delta networks.
- These networks are attractive for packet switching since several packets can be switched simultaneously and in parallel.
- Although these networks have different interconnection patterns, they have the same performance for packet switching.
- They all have the following properties
 - lacktriangle All consists of $\log_b N$ stages of N/b $b \times b$ switches.
 - ightharpoonup Self-routing (digit-controlled) in which a unique k digit base b destination address is used.
 - ► They can be constructed in a modular fashion from smaller networks (block structured).
 - ▶ They can operate in synchronous or asynchronous mode.
 - ▶ Their regularity makes the attractive for VLSI implementation.
- These networks become inherently blocking regardless of being blocking, nonblocking, and rearrangeable in circuit-switched implementations because packets could collide with each other.

CS 4/55201: Computer Networks Fall 2001 45 of 52 CS 4/55201: Computer Networks Fall 2001 46 of 52

- There are two types of blocking
 - ▶ Internal link blocking: contention for a particular link inside the network.
 - ▶ Output port blocking: two or more packets are contending for the same output port.
- There are several ways to reduce the blocking (increase the through put) of banyan switches.
 - ▶ Increasing internal link speed.
 - ▶ Placing buffers in every switching node.
 - ▶ Using a handshaking or backpresure mechanism to delay the transfer of blocked packets.
 - ▶ Using multiple network to provide multiple paths or using multiple links for each switch.
 - ▶ Using a distribution network at the front of banyan for load balancing.
- The Integrated Services Packet Network(ISPN) is based on large high performance packet switch structure.
- The switch interfaces up to 1000 high-speed digital transmission facilities via packet processors(PP).
- A PP provides input buffering, adds the routing header, and performs the link level protocol functions.
- A control processor (CP) performs all connections control functions.
- The switch fabric consists of a 10-stage self-routing buffered banyan with 1024 ports of 5120 buffered 2×2 switching elements.

Turner's ISPN Packet Switch Structure

- The switch fabric uses backpresure flow control mechanisms between stages which prevent buffer overflow or packet loss.
- It uses the *virtual cut-through* buffering technique.
- When a packet arrives at a switching element and the output port is free, it bypasses the buffer and directly sends it to the output port.
- AT&T introduced a wideband packet technology network based on a 16×16 buffered banyan with 8 Mbits/s.
- Buffered banyan networks have been studied analytically and by simulations models based on different buffer-size, the position of buffers, traffic distributions, and switching size.

Sort-Banyan-Based Fabrics

A Brief Summary of INs

- Banyan network is internally blocking; two packets destined for two different destinations may collide in one of the stages.
- If packets are first sorted based on their destination address, and then routed through the network, then the internal blocking can be avoided.
- Batcher-banyan is an example of sort-banyan network.
- Blocking still can happen if two or more packets have the same destination address.

Chapter 3: Switching and Forwarding A Brief Summary of INs Chapter 3: Switching and Forwarding A Brief Summary of INs

Disjoint-Path and Output Queuing

- The switch fabrics is based on nonblocking fully interconnected topology.
- To resolve the output contention, output queueing is used.
- In general, a higher throughput can be achieved when output buffering is used since there is no HOL blocking.
- Infinite output buffering capability gives the best delay/throughput performance.

Fabric with Shared Medium

- A bus or ring network is used as switching medium.
- They provide flexibility in terms of access protocols and distribution of traffic.
- Their bandwidth and throughput are limited compared to multipath switch networks.
- Multiple rings or multiple buses can be used to increase the capacity.
- The frame duration of 125μ s maintains complete time transparency for circuit-switched channel.

CS 4/55201: Computer Networks Fall 2001 51 of 52 CS 4/55201: Computer Networks Fall 2001 52 of 52