COMPUTER NETWORKS
CS 45201
CS 55201

CHAPTER 5
End-to-End protocols

Paul A. Farrell and H. Peyravi

Department of Computer Science
Kent State University
Kent, Ohio 44242
farrell@mcs. kent.edu
http://www.cs.kent.edu/" farrell

Fall 2001

Remote Procedure Call

CS 4/55201: Computer Networks Fall 2001

End-to-End (Transport) Protocols
Simple Demultiplexer (UDP)
Reliable Byte-Stream (TCP)

CS 4/55201: Computer Networks

Fall 2001

Chapter 5: End-to-End protocols End-to-End (Transport) Protocols

/
End-to-End (Transport) Protocols

B Underlying best-effort network

» drops messages

» re-orders messages

» delivers duplicate copies of a given message
» limits messages to some finite size

» delivers messages after an arbitrarily long delay
B Common end-to-end services

» guarantee message delivery

» deliver messages in the same order they are sent

» deliver at most one copy of each message

» support arbitrarily large messages

» support synchronization

» allow the receiver to apply flow control to the sender

» support multiple application processes on each host

N

CS 4/55201: Computer Networks Fall 2001

1 of 20

Chapter 5: End-to-End protocols Simple Demultiplexer (UDP)

-

Simple Demultiplexer (UDP)
B Unreliable and unordered datagram service
B Adds multiplexing - multiple connections between hosts
B No flow control
B Endpoints identified by ports (16 bits -; 64K possible per host)
» servers have well-known ports
» client and server use these to agree on other port for
communication
> see /etc/services on Unix
B Checksum (Optional IPv4, Mandatory IPv6) - same as IP
algorithm
» pseudo header + udp header + udp data
» pseudo header is IP protocol number, source and destination IP
addresses, UDP length field
B Header format
SrcPort | DestPort
CS 4/55201: Computer Networks Fall 2001 2 of 20

Chapter 5: End-to-End protocols

Reliable Byte-Stream (TCP)

/
Reliable Byte-Stream (TCP)

B Connection-oriented
B Byte-stream

» sending process writes some number of bytes
» TCP breaks into segments and sends via IP

> receiving process reads some number of bytes

1 1]
L7 write [Read
. Bytes . Bytes
1 1]
TCP TCP
segment ‘ B ‘ segment ‘ ‘ segment

Transmit Segments

B Full duplex
B Flow control: keep sender from overrunning receiver

B Congestion control: keep sender from overrunning network

~

CS 4/55201: Computer Networks Fall 2001

3 of 20

Chapter 5: End-to-End protocols

Reliable Byte-Stream (TCP)

-

|End-to-End lssues]

Based on sliding window protocol used at data link level, but the
situation is very different.

1. Potentially connects many different hosts

B need explicit connection establishment and termination
2. Potentially different RTT

B need adaptive timeout mechanism
3. Potentially long delay in network

B need to be prepared for arrival of very old packets
M is limit, discarded after TTL

4. Potentially different capacity at destination
B need to accommodate different amounts of buffering
5. Potentially different network capacity

B need to be prepared for network congestion

B MSL (maximum segment lifetime) - recommended 120 sec

\

CS 4/55201: Computer Networks Fall 2001

4 of 20

Chapter 5: End-to-End protocols

Reliable Byte-Stream (TCP) Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)

-

|Segment Format

Src Port

Dest Port

SequenceNum

Acknowledgement

HdrLen| O
4 [®)

Flags
(6)

Advertised
Window

CheckSum

UrgPtr

options

(variable)

data

B Each connection identified with 4-tuple:

» (SrcPort, SrcIPAddr, DstPort, DstIPAddr)

B Sliding window + flow control

» Acknowledgment, SequenceNum, AdvertisedWindow

Data (SequenceNum)

Sender

/\

~ A

Acknowledgement +
AdvertisedWindow

Receiver

N 4 N
B Flags

» SYN: TCP connection establishing

» FIN: TCP connection terminating

» RESET: Receiver is confused - abort connection
» PUSH: Sender invokes push operation

» URG: segment contains urgent data

» ACK: Acknowledgment

B Checksum
» pseudo header + tcp header + data
When does TCP send segment?
1. After MSS (Maximum Segment Size) bytes are buffered

B usually largest size that IP will not fragment
B MSS = MTU - sizeof(TCP + IP headers)

2. if sender flushes buffer with push operation
B Telnet does after each character

3. when timer expires

CS 4/55201: Computer Networks

Fall 2001

5 of 20 CS 4/55201: Computer Networks Fall 2001 6 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP) Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)

4 N 4 N

|Connection Establishment and Termination| |S|iding Window Reuvisited
Three-Way Handshake

Active Participant Passive Participant -
TCP cP
Last Byte Written Last Byte Read

s
P

Last Byte Acked Last Byte Sent Next Byte Expected Last Byte Received

B Each byte has a sequence number

ACKs are cumulative

B Sending side

» LastByteAcked < LastByteSent
» LastByteSent < LastByteWritten

> bytes between LastByteAcked and LastByteWritten must
be buffered

B Receiving side

» LastByteRead < NextByteExpected, Why?
» NextByteExpected < LastByteRcvd + 1, Why?

CS 4/55201: Computer Networks Fall 2001 7 of 20 CS 4/55201: Computer Networks Fall 2001 8 of 20

Chapter 5: End-to-End protocols

~

Flow Control]

Receiver advertises a window size to prevent buffer overflow

Sender buffer size: MaxSendBuffer

Receive buffer size: MaxRcvBuffer

Receiving side

» LastByteRcvd - LastByteRead < MaxRcvBuffer

» AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd
- LastByteRead)

Sending side

» LastByteSent - LastByteAcked < AdvertisedWindow

» EffectiveWindow = AdvertisedWindow -
(LastByteSent - LastByteAcked)

> LastByteWritten - LastByteAcked < MaxSendBuffer

» TCP blocks sender from sending y bytes if
(LastByteWritten - LastByteAcked) + y >
MaxSendBuffer

Always send ACK in response to an arriving data segment, but not
otherwise

Sender persists in sending 1 byte when AdvertisedWindow=0

Eventually ACK will arrive with new AdvertisedWindow

CS 4/55201: Computer Networks

Reliable Byte-Stream (TCP)

~

Chapter 5: End-to-End protocols

Reliable Byte-Stream (TCP)

-

\

|Keeping the Pipe Full

B Wrap Around: 32-bit SequenceNum - want no wrap in 120 sec

Bandwidth

Time Until Wrap Around

T1 (1.5Mbps)

Ethernet (10Mbps)
T3 (45Mbps)
FDDI (100Mbps)
STS-3 (155Mbps)
STS-12 (622Mbps)
STS-24 (1.2Gbps)

6.4 hours

232/(1.544/8) bytes =6.18 hrs
57 minutes

13 minutes

6 minutes

4 minutes

55 seconds

28 seconds

» Assume RTT= 100 ms

B Bytes in Transit: 16-bit AdvertisedWindow
allows 64KB of data in pipe

typical crosscountry delay in US

Bandwidth

Delay x Bandwidth Product

Fall 2001 9 of 20

T1 (1.5Mbps) 18KB

Ethernet (10Mbps) | 122KB

T3 (45Mbps) 549KB

FDDI (100Mbps) | 1.2MB

STS-3 (155Mbps) | 1.8MB

STS-12 (622Mbps) | 7.4MB

STS-24 (1.2Gbps) | 14.8MB

CS 4/55201: Computer Networks Fall 2001 10 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)

~

|Adaptive Retransmission

= Original Algorithm
B Measure SampleRTT for each segment/ACK pair
B Compute weighted average of RTT

» EstimatedRTT = ax EstimatedRTT +
(% SampleRTT

» where v + § =1
» « between 0.8 and 0.9
» (3 between 0.1 and 0.2

B Set timeout based on EstimatedRTT
» TimeOut = 2 X EstimatedRTT
— A flaw
B Does ACK really acknowledges a transmission?
B No, it acknowledges receipt of a segment

B How many retransmissions had taken place before ACK arrived?

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)

—> Worong samples

Sender Receiver Sender Receiver

Sample RTT
Q
ol
g .
5
[Z)
3
g
o
S .
g
3
Samrlﬁe RTT

(a) Sample RTT too long (b) Sample RTT too short

B in (a) sample should be for the second attempt

B in (b) sample should be for the first attempt

— Karn/Partridge Algorithm
B Do not sample RTT when retransmitting
B Double timeout after each retransmission

» Similar to backoff algorithm

CS 4/55201: Computer Networks Fall 2001 11 of 20

CS 4/55201: Computer Networks Fall 2001 12 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP) Chapter 5: End-to-End protocols Remote Procedure Call

= Jacobson/Karels Algorithm Remote Procedure Call

B Karn/Partridge algorithm was introduced when the Internet was
not suffering the current congestion

B Consider variance when setting timeout value

B Jacobson/Karels came up with a new calculation for average RTT B Common pattern of communication used by application programs
Difference = SampleRTT - EstimatedRTT B Also called message transaction
EstimatedRTT = EstimatedRTT + (§ x Difference)
Deviation = Deviation + 0 (|Difference|- Client Server
Deviation)

» where ¢ is a fraction between 0 and 1

B TimeOut = ; X EstimatedRTT + ¢ x Deviation w
» where p =1and ¢ =4

blocked computing

%

blocked

blocked

CS 4/55201: Computer Networks Fall 2001 13 of 20 CS 4/55201: Computer Networks Fall 2001 14 of 20

Chapter 5: End-to-End protocols Remote Procedure Call Chapter 5: End-to-End protocols Remote Procedure Call

4 N 4 N

caller callee

@ @ Bulk Transfer (BLAST)
return return

o1 value oo value Unlike AAL and IP in that it tries to recover from lost fragments;

clent server persistent, but does not guarantee delivery. Strategy is to use

stu stu 3 . . .

selective retransmission (or partial acknowledgments).
req reply req reply
Sender Receiver
RPC RPC
Protocol Protocol
network

Peterson divides RPC protocol into three basic functions
B BLAST: fragments and reassembles large messages
B CHAN: synchronizes request and reply messages

B SELECT: dispatches request messages to the correct process

CS 4/55201: Computer Networks Fall 2001 15 of 20 CS 4/55201: Computer Networks Fall 2001 16 of 20

Chapter 5: End-to-End protocols

Remote Procedure Call

-

BLAST Header Format

ProtNum

MID

Length

Num-
Frags Type

FragMask

B MID must protect against wrap around

B Type = DATA or SRR

B NumFrags indicates number of fragments in message
B FragMask distinguishes among fragments:

» if Type=DATA, identifies this fragment
» if Type=SRR, identifies missing fragments

N

CS 4/55201: Computer Networks Fall 2001

17 of 20

Chapter 5: End-to-End protocols Remote Procedure Call

4 N

Request/Reply (CHAN)

Guarantees message delivery, and synchronizes client with server; i.e.,
blocks client until reply received. Supports at-most-once semantics.

Simple case:
Client Server
W
ACK
%
ACk

Implicit Acknowledgments:
Client Server

'G'QUes,l
rephy >

reCIUESt 2

%

CS 4/55201: Computer Networks Fall 2001 18 of 20

Chapter 5: End-to-End protocols

Remote Procedure Call

-

Dispatcher (SELECT)

Dispatches request messages to the appropriate procedure; fully
synchronous counterpart to UDP.

Caller

xCall

SELECT

xCall

CHAN

xPush l T xDemux

N

Client

Server

Callee

xCallDemux

SELECT

xCallDemux

CHAN

xPush l T xDemux

Address Space for Procedures

B Flat: unique id for each possible procedure

B Hierarchical: program -+ procedure within program

CS 4/55201: Computer Networks

Fall 2001

19 of 20

Chapter 5: End-to-End protocols

Remote Procedure Call

-

Simple RPC Stack

|Putting it All Together

SELECT

CHAN

BLAST

ETH

\

CS 4/55201: Computer Networks Fall 2001

20 of 20

