
' $

COMPUTER NETWORKS
CS 45201
CS 55201

CHAPTER 5

End-to-End protocols

Paul A. Farrell and H. Peyravi

Department of Computer Science

Kent State University

Kent, Ohio 44242

farrell@mcs.kent.edu

http://www.cs.kent.edu/˜ farrell

Fall 2001

& %
CS 4/55201: Computer Networks Fall 2001

' $

Contents

• End-to-End (Transport) Protocols

• Simple Demultiplexer (UDP)

• Reliable Byte-Stream (TCP)

• Remote Procedure Call

& %
CS 4/55201: Computer Networks Fall 2001

Chapter 5: End-to-End protocols End-to-End (Transport) Protocols' $
End-to-End (Transport) Protocols

� Underlying best-effort network

I drops messages

I re-orders messages

I delivers duplicate copies of a given message

I limits messages to some finite size

I delivers messages after an arbitrarily long delay

� Common end-to-end services

I guarantee message delivery

I deliver messages in the same order they are sent

I deliver at most one copy of each message

I support arbitrarily large messages

I support synchronization

I allow the receiver to apply flow control to the sender

I support multiple application processes on each host

& %
CS 4/55201: Computer Networks Fall 2001 1 of 20

Chapter 5: End-to-End protocols Simple Demultiplexer (UDP)' $
Simple Demultiplexer (UDP)

� Unreliable and unordered datagram service

� Adds multiplexing - multiple connections between hosts

� No flow control

� Endpoints identified by ports (16 bits -¿ 64K possible per host)

I servers have well-known ports

I client and server use these to agree on other port for

communication

I see /etc/services on Unix

� Checksum (Optional IPv4, Mandatory IPv6) - same as IP

algorithm

I pseudo header + udp header + udp data

I pseudo header is IP protocol number, source and destination IP

addresses, UDP length field

� Header format

Src Port Dest Port

Check Sum Length

& %
CS 4/55201: Computer Networks Fall 2001 2 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $
Reliable Byte-Stream (TCP)

Overview

� Connection-oriented

� Byte-stream

I sending process writes some number of bytes

I TCP breaks into segments and sends via IP

I receiving process reads some number of bytes

segment segment segment. . .

Transmit Segments

. . .

Appl Process

Write
Bytes

Appl Process

. . .

Read
Bytes

TCP

send buffer

TCP

receive buffer

� Full duplex

� Flow control: keep sender from overrunning receiver

� Congestion control: keep sender from overrunning network

& %
CS 4/55201: Computer Networks Fall 2001 3 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $

End-to-End Issues

Based on sliding window protocol used at data link level, but the

situation is very different.

1. Potentially connects many different hosts

� need explicit connection establishment and termination

2. Potentially different RTT

� need adaptive timeout mechanism

3. Potentially long delay in network

� need to be prepared for arrival of very old packets

� is limit, discarded after TTL

� MSL (maximum segment lifetime) - recommended 120 sec

4. Potentially different capacity at destination

� need to accommodate different amounts of buffering

5. Potentially different network capacity

� need to be prepared for network congestion

& %
CS 4/55201: Computer Networks Fall 2001 4 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $

Segment Format

Src Port Dest Port

Advertised
Window

Acknowledgement

SequenceNum

CheckSum

Flags

options

UrgPtr

0
(4) (6) (6)

(variable)

data

HdrLen

� Each connection identified with 4-tuple:

I 〈SrcPort, SrcIPAddr, DstPort, DstIPAddr〉

� Sliding window + flow control

I Acknowledgment, SequenceNum, AdvertisedWindow

Sender Receiver

Data (SequenceNum)

Acknowledgement +
AdvertisedWindow

& %
CS 4/55201: Computer Networks Fall 2001 5 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $
� Flags

I SYN: TCP connection establishing

I FIN: TCP connection terminating

I RESET: Receiver is confused - abort connection

I PUSH: Sender invokes push operation

I URG: segment contains urgent data

I ACK: Acknowledgment

� Checksum

I pseudo header + tcp header + data

When does TCP send segment?

1. After MSS (Maximum Segment Size) bytes are buffered

� usually largest size that IP will not fragment

� MSS = MTU - sizeof(TCP + IP headers)

2. if sender flushes buffer with push operation

� Telnet does after each character

3. when timer expires

& %
CS 4/55201: Computer Networks Fall 2001 6 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $

Connection Establishment and Termination

Three-Way Handshake

Active Participant Passive Participant

SYN, SequenceNum = x

Acknowledgement = x + 1

SYN + ACK, SequenceNum = y,

ACK, Acknowledgement = y + 1

& %
CS 4/55201: Computer Networks Fall 2001 7 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $

Sliding Window Revisited

Last Byte Acked

Last Byte Written

Last Byte Sent

TCP

Sending Appl

TCP

Receiving Appl

Next Byte Expected Last Byte Received

Last Byte Read

� Each byte has a sequence number

� ACKs are cumulative

� Sending side

I LastByteAcked ≤ LastByteSent

I LastByteSent ≤ LastByteWritten

I bytes between LastByteAcked and LastByteWritten must

be buffered

� Receiving side

I LastByteRead < NextByteExpected, Why?

I NextByteExpected ≤ LastByteRcvd + 1, Why?

& %
CS 4/55201: Computer Networks Fall 2001 8 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $

Flow Control

� Receiver advertises a window size to prevent buffer overflow

� Sender buffer size: MaxSendBuffer

� Receive buffer size: MaxRcvBuffer

� Receiving side

I LastByteRcvd - LastByteRead ≤ MaxRcvBuffer

I AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd

- LastByteRead)

� Sending side

I LastByteSent - LastByteAcked ≤ AdvertisedWindow

I EffectiveWindow = AdvertisedWindow -

(LastByteSent - LastByteAcked)

I LastByteWritten - LastByteAcked ≤ MaxSendBuffer

I TCP blocks sender from sending y bytes if

(LastByteWritten - LastByteAcked) + y >

MaxSendBuffer

� Always send ACK in response to an arriving data segment, but not

otherwise

� Sender persists in sending 1 byte when AdvertisedWindow=0

� Eventually ACK will arrive with new AdvertisedWindow

& %
CS 4/55201: Computer Networks Fall 2001 9 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $

Keeping the Pipe Full

� Wrap Around: 32-bit SequenceNum - want no wrap in 120 sec

Bandwidth Time Until Wrap Around

T1 (1.5Mbps) 6.4 hours

2
32/(1.544/8) bytes =6.18 hrs

Ethernet (10Mbps) 57 minutes

T3 (45Mbps) 13 minutes

FDDI (100Mbps) 6 minutes

STS-3 (155Mbps) 4 minutes

STS-12 (622Mbps) 55 seconds

STS-24 (1.2Gbps) 28 seconds

� Bytes in Transit: 16-bit AdvertisedWindow

allows 64KB of data in pipe

I Assume RTT= 100 ms typical crosscountry delay in US

Bandwidth Delay × Bandwidth Product

T1 (1.5Mbps) 18KB

Ethernet (10Mbps) 122KB

T3 (45Mbps) 549KB

FDDI (100Mbps) 1.2MB

STS-3 (155Mbps) 1.8MB

STS-12 (622Mbps) 7.4MB

STS-24 (1.2Gbps) 14.8MB

& %
CS 4/55201: Computer Networks Fall 2001 10 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $

Adaptive Retransmission

=⇒ Original Algorithm

� Measure SampleRTT for each segment/ACK pair

� Compute weighted average of RTT

I EstimatedRTT = α× EstimatedRTT +

β× SampleRTT

I where α + β = 1

I α between 0.8 and 0.9

I β between 0.1 and 0.2

� Set timeout based on EstimatedRTT

I TimeOut = 2 × EstimatedRTT

=⇒ A flaw

� Does ACK really acknowledges a transmission?

� No, it acknowledges receipt of a segment

� How many retransmissions had taken place before ACK arrived?

& %
CS 4/55201: Computer Networks Fall 2001 11 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $
=⇒ Wrong samples

Sender Receiver

retransmission

original transmission

ACKS
am

pl
e

R
T

T

Sender Receiver

retransmission

original transmission

ACK

S
am

pl
e

R
T

T

(a) Sample RTT too long (b) Sample RTT too short

� in (a) sample should be for the second attempt

� in (b) sample should be for the first attempt

=⇒ Karn/Partridge Algorithm

� Do not sample RTT when retransmitting

� Double timeout after each retransmission

I Similar to backoff algorithm

& %
CS 4/55201: Computer Networks Fall 2001 12 of 20

Chapter 5: End-to-End protocols Reliable Byte-Stream (TCP)' $
=⇒ Jacobson/Karels Algorithm

� Karn/Partridge algorithm was introduced when the Internet was

not suffering the current congestion

� Consider variance when setting timeout value

� Jacobson/Karels came up with a new calculation for average RTT

Difference = SampleRTT - EstimatedRTT

EstimatedRTT = EstimatedRTT + (δ × Difference)

Deviation = Deviation + δ (|Difference|-

Deviation)

I where δ is a fraction between 0 and 1

� TimeOut = µ × EstimatedRTT + φ × Deviation

I where µ = 1 and φ = 4

& %
CS 4/55201: Computer Networks Fall 2001 13 of 20

Chapter 5: End-to-End protocols Remote Procedure Call' $
Remote Procedure Call

Overview

� Common pattern of communication used by application programs

� Also called message transaction

Client Server

blocked

blocked
request

reply

computing

blocked

& %
CS 4/55201: Computer Networks Fall 2001 14 of 20

Chapter 5: End-to-End protocols Remote Procedure Call' $

return
value

args

req reply

caller
(client)

RPC
Protocol

client
stub

return
value

args

req reply

RPC
Protocol

callee
(server)

server
stub

network

Peterson divides RPC protocol into three basic functions

� BLAST: fragments and reassembles large messages

� CHAN: synchronizes request and reply messages

� SELECT: dispatches request messages to the correct process

& %
CS 4/55201: Computer Networks Fall 2001 15 of 20

Chapter 5: End-to-End protocols Remote Procedure Call' $

Bulk Transfer (BLAST)

Unlike AAL and IP in that it tries to recover from lost fragments;

persistent, but does not guarantee delivery. Strategy is to use

selective retransmission (or partial acknowledgments).

Sender Receiver

Frag 1
Frag 2Frag 3

Frag 4
Frag 5

Frag 6

Frag 3
Frag 5

SRR

SRR

& %
CS 4/55201: Computer Networks Fall 2001 16 of 20

Chapter 5: End-to-End protocols Remote Procedure Call' $
BLAST Header Format

MID

ProtNum

Length

FragMask

Num−
Frags Type

� MID must protect against wrap around

� Type = DATA or SRR

� NumFrags indicates number of fragments in message

� FragMask distinguishes among fragments:

I if Type=DATA, identifies this fragment

I if Type=SRR, identifies missing fragments

& %
CS 4/55201: Computer Networks Fall 2001 17 of 20

Chapter 5: End-to-End protocols Remote Procedure Call' $

Request/Reply (CHAN)

Guarantees message delivery, and synchronizes client with server; i.e.,

blocks client until reply received. Supports at-most-once semantics.

Simple case:

Client Server

request

reply

ACK

ACK

Implicit Acknowledgments:

Client Server

. . .

request 1

reply 1

request 2

reply 2

& %
CS 4/55201: Computer Networks Fall 2001 18 of 20

Chapter 5: End-to-End protocols Remote Procedure Call' $

Dispatcher (SELECT)

Dispatches request messages to the appropriate procedure; fully

synchronous counterpart to UDP.

xCall

CHAN

Caller

SELECT

xCall

xPush xDemux

Callee

CHAN

SELECT

xPush xDemux

xCallDemux

xCallDemux

Client Server

Address Space for Procedures

� Flat: unique id for each possible procedure

� Hierarchical: program + procedure within program

& %
CS 4/55201: Computer Networks Fall 2001 19 of 20

Chapter 5: End-to-End protocols Remote Procedure Call' $

Putting it All Together

Simple RPC Stack

SELECT

CHAN

BLAST

IP

ETH

& %
CS 4/55201: Computer Networks Fall 2001 20 of 20

