
' $

COMPUTER NETWORKS
CS 45201
CS 55201

CHAPTER 6

Congestion Control

P. Farrell and H. Peyravi

Department of Computer Science

Kent State University

Kent, Ohio 44242

farrell@mcs.kent.edu

http://www.cs.kent.edu/˜ farrell

Fall 2001

& %
CS 4/55201: Computer Networks Fall 2001

' $

COMPUTER NETWORKS
CS 45201
CS 55201

CHAPTER 6

Congestion Control

P. Farrell and H. Peyravi

Department of Mathematics and Computer Science

Kent State University

Kent, Ohio 44242

farrell@cs.kent.edu

Fall 2001

& %
CS 4/55201: Computer Networks Fall 2001

' $

Contents

• Congestion Control Issues

• Queuing Disciplines

• TCP Congestion Control

• Congestion Avoidance Mechanisms

& %
CS 4/55201: Computer Networks Fall 2001

Chapter 6: Congestion Control Congestion Control Issues' $
Congestion Control Issues

� Two sides of the same coin

I pre-allocate resources so that to avoid congestion

I send data and control congestion if (and when) is occurs

Router

Source
 1

Source
 2

Dest

10 Mbps Ethernet

100 Mbps FDDI

1.5 Mbps T1 Link

� Two points of implementation

I hosts at the edges of the network (transport protocol)

I routers inside the network (queuing discipline)

� Underlying service model

I best-effort (assume for now)

I multiple qualities of service (later)

& %
CS 4/55201: Computer Networks Fall 2001 1 of ??

Chapter 6: Congestion Control Congestion Control Issues' $
� Connectionless flows

I sequence of packets sent between source/destination pair

I maintain soft state at the routers

Router

Source
 1

Source
 2

Router

Router

Source
 3

Dest
 1

Dest
 2

� Taxonomy

I router-centric versus host-centric

I reservation-based versus Feedback-based

I window-based versus rate-based

� Evaluation

I fairness

I power (ratio of throughput to delay)

Power =
Throughput

Delay

LoadOptimal
Load

& %
CS 4/55201: Computer Networks Fall 2001 2 of ??

Chapter 6: Congestion Control Queuing Disciplines' $
Queuing Disciplines

� First-In-First-Out (FIFO)

I does not discriminate between traffic sources

� Fair Queuing (FQ)

I explicitly segregates traffic based on flows

I ensures no flow captures more than its share of capacity

I variation: weighted fair queuing (WFQ)

Flow 1

Flow 2

Flow 3

Flow 4

Round−Robin
 Service

& %
CS 4/55201: Computer Networks Fall 2001 3 of ??

Chapter 6: Congestion Control Queuing Disciplines' $
� Problem: packets not all the same length

I really want bit-by-bit round robin

I not feasible to interleave bits (schedule on packet basis)

I simulate by determining when packet would finish

� For a single flow

I suppose clock ticks each time a bit is transmitted

I let Pi denote the length of packet i

I let Si denote the time when start to transmit packet i

I let Fi denote the time when finish transmitting packet i

I Fi = Si + Pi

I When does router start transmitting packet i?

• If before router finished packet i − 1 from this flow, then

immediately after last bit of i − 1 (Fi−1)

• If no current packets for this flow, then start transmitting

when arrives (call this Ai)

I Thus: Fi = MAX(Fi−1, Ai) + Pi

� For multiple flows

I calculate Fi for each packet that arrives on each flow

I treat all Fi’s as timestamps

I next packet to transmit is one with lowest timestamp

� Not perfect: can’t preempt the packet currently being transmitted

& %
CS 4/55201: Computer Networks Fall 2001 4 of ??

Chapter 6: Congestion Control TCP Congestion Control' $
TCP Congestion Control

� Idea

I assumes best-effort network (FIFO or FQ routers)

I each source determines network capacity for itself

I uses implicit feedback

I ACKs pace transmission (self-clocking)

� Challenge

I determining the available capacity in the first place

I adjusting to changes in the available capacity

& %
CS 4/55201: Computer Networks Fall 2001 5 of ??

Chapter 6: Congestion Control TCP Congestion Control' $

Additive Increase/Multiplicative Decrease

� Objective: adjust to changes in the available capacity

� New state variable per connection: CongestionWindow

I limits how much data source has in transit

MaxWin = MIN(CongestionWindow, AdvertisedWindow)

EffWin = MaxWin - (LastByteSent - LastByteAcked)

� Idea:

I increase CongestionWindow when congestion goes down

I decrease CongestionWindow when congestion goes up

� Question: how does the source determine whether or not the

network is congested?

� Answer: a timeout occurs

I timeout signals that a packet was lost

I packets are seldom lost due to transmission error

I lost packet implies congestion

& %
CS 4/55201: Computer Networks Fall 2001 6 of ??

Chapter 6: Congestion Control TCP Congestion Control' $
� Algorithm:

I increment CongestionWindow by one packet per RTT (linear

increase)

I divide CongestionWindow by two whenever a timeout occurs

(multiplicative decrease)

Source Destination

. .
 .

� In practice: increment a little for each ACK

Increment = (MSS * MSS)/CongestionWindow

CongestionWindow += Increment

where MSS is maximum message size

& %
CS 4/55201: Computer Networks Fall 2001 7 of ??

Chapter 6: Congestion Control TCP Congestion Control' $
� Example trace: sawtooth behavior

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time in seconds

0

10

20

30

40

50

60

70

K
B

& %
CS 4/55201: Computer Networks Fall 2001 8 of ??

Chapter 6: Congestion Control TCP Congestion Control' $

Slow Start

� Objective: determine the available capacity in the first place

� Idea:

I begin with CongestionWindow = 1 packet

I double CongestionWindow each RTT

Source Destination

. .
 .

� Exponential growth, but slower than all in one blast

� Used...

I when first starting connection

I when connection goes dead waiting for a timeout

& %
CS 4/55201: Computer Networks Fall 2001 9 of ??

Chapter 6: Congestion Control TCP Congestion Control' $

Fast Retransmit and Fast Recovery

� Problem: coarse-grain TCP timeouts lead to idle periods

� Fast retransmit: use duplicate ACKs to trigger retransmission

segment 1

segment 2

segment 3

segment 4

segment 5

segment 6

retransmit
segment 3

ack 1

ack 2

ack 2

ack 2

ack 2

ack 6

& %
CS 4/55201: Computer Networks Fall 2001 10 of ??

Chapter 6: Congestion Control Congestion Avoidance Mechanisms' $
Congestion Avoidance Mechanisms

� TCP’s strategy

I to control congestion once it happens

I to repeatedly increase load in an effort to find the point at

which congestion occurs, and then back off

� Alternative strategy

I predict when congestion is about to happen, and reduce the

rate at which hosts send data just before packets start being

discarded

I we call this congestion avoidance, to distinguish it from

congestion control

� Two possibilities

I router-centric: DECbit and RED Gateways

I host-centric: TCP Vegas

& %
CS 4/55201: Computer Networks Fall 2001 11 of ??

Chapter 6: Congestion Control Congestion Avoidance Mechanisms' $

DECbit

� Add binary congestion bit to each packet header

� Router

I monitors average queue length over last busy+idle plus current

busy cycle

Previous
Cycle

Current
Cycle

Time

Queue Length

Current
Time

Averaging
Interval

I set congestion bit if average queue length greater than 1 when

packet arrives

I attempts to balance throughput against delay

� End Hosts

I destination echos bit back to source

I source records how many packets resulted in set bit

I if less than 50% of last window’s worth had bit set, then

increase CongestionWindow by 1 packet

I if 50% or more of last window’s worth had bit set, then

decrease CongestionWindow by 0.875 times

& %
CS 4/55201: Computer Networks Fall 2001 12 of ??

Chapter 6: Congestion Control Congestion Avoidance Mechanisms' $

Random Early Detection (RED) Gateways

� Notification is implicit

I just drop the packet (TCP will timeout)

I could make explicit by marking the packet

� Early random drop

I rather than wait for queue to become full, drop each arriving

packet with some drop probability whenever the queue length

exceeds some drop level

� RED: fills in the details

I compute average queue length

AvgLen = (1 - Weight) * AvgLen

+ Weight * SampleLen

• 0 < Weight < 1 (usually 0.002)

• SampleLen is queue length each time a packet arrives

Queue length

Instantaneous

Average

Time

& %
CS 4/55201: Computer Networks Fall 2001 13 of ??

Chapter 6: Congestion Control Congestion Avoidance Mechanisms' $
� two queue length thresholds

if AvgLen <= MinThreshold then

enqueue the packet

if MinThreshold < AvgLen < MaxThreshold

calculate probability P

drop arriving packet with probability P

if MaxThreshold <= AvgLen

drop arriving packet

MaxThreshold

AvgLength

MinThreshold

� probability P

I not fixed

I function of AvgLen and how long since last drop (count)

keeps track of new packets that have been queued while

AvgLen has been between the two thresholds

TempP = MaxP * (AvgLen - MinThreshold)

/ (MaxThreshold - MinThreshold)

P = TempP/(1 - count * TempP)

& %
CS 4/55201: Computer Networks Fall 2001 14 of ??

Chapter 6: Congestion Control Congestion Avoidance Mechanisms' $
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

� Notes

I probability of dropping a particular flow’s packet(s) is roughly

proportional to the share of the bandwidth that flow is

currently getting

I MaxP is typically set to 0.02, meaning that when the average

queue size is halfway between the two thresholds, the gateway

drops roughly one out of 50 packets.

I if traffic is bursty, then MinThreshold should be sufficiently

large to allow link utilization to be maintained at an acceptably

high level

I difference between two thresholds should be larger than the

typical increase in the calculated average queue length in one

RTT; setting MaxThreshold to twice MinThreshold is

reasonable for traffic on today’s Internet

& %
CS 4/55201: Computer Networks Fall 2001 15 of ??

Chapter 6: Congestion Control Congestion Avoidance Mechanisms' $

TCP Vegas

� Idea: source watches for some sign that some router’s queue is

building up and congestion will happen soon; e.g.,

I RTT is growing

I sending rate flattens

� Algorithm

I let BaseRTT be the minimum of all measured RTTs

(commonly the RTT of the first packet)

I if not overflowing the connection, then

ExpectedRate = CongestionWindow / BaseRTT

I source calculates current sending rate (ActualRate) once per

RTT (read how)

I source compares ActualRate with ExpectedRate

Diff = ExpectedRate - ActualRate

if Diff < α

−→ increase CongestionWindow linearly

else if Diff > β

−→ decrease CongestionWindow linearly

else

−→ leave CongestionWindow unchanged

& %
CS 4/55201: Computer Networks Fall 2001 16 of ??

Chapter 6: Congestion Control Congestion Avoidance Mechanisms' $
� Parameters

I α: 1 packet

I β: 3 packets

� Why not multiplicative decrease?

� Go to multiplicative if there is a timeout

& %
CS 4/55201: Computer Networks Fall 2001 17 of ??

