
Silberschatz, Galvin and Gagne 20024.1Operating System Concepts

Chapter 4: Processes

n Process Concept
n Process Scheduling
n Operations on Processes
n Cooperating Processes
n Interprocess Communication
n Communication in Client-Server Systems

Silberschatz, Galvin and Gagne 20024.2Operating System Concepts

Process Concept

n An operating system executes a variety of programs:
F Batch system – jobs
F Time-shared systems – user programs or tasks

n Textbook uses the terms job and process almost
interchangeably.

n Process – a program in execution; process execution
must progress in sequential fashion.

n A process includes:
F program counter
F stack
F data section

Silberschatz, Galvin and Gagne 20024.3Operating System Concepts

Process State

n As a process executes, it changes state
F new: The process is being created.
F running: Instructions are being executed.
F waiting: The process is waiting for some event to occur.
F ready: The process is waiting to be assigned to a

processor
F terminated: The process has finished execution.

Silberschatz, Galvin and Gagne 20024.4Operating System Concepts

Diagram of Process State

Silberschatz, Galvin and Gagne 20024.5Operating System Concepts

Process Control Block (PCB)

Information associated with each process.
n Process ID
n Process state
n Program counter
n CPU registers
n CPU scheduling information
n Memory-management information
n Accounting information
n I/O status information

Silberschatz, Galvin and Gagne 20024.6Operating System Concepts

Process Control Block (PCB)

Silberschatz, Galvin and Gagne 20024.7Operating System Concepts

CPU Switch From Process to Process

Silberschatz, Galvin and Gagne 20024.8Operating System Concepts

Process Scheduling Queues

n Job queue – set of all processes in the system.
n Ready queue – set of all processes residing in main

memory, ready and waiting to execute.
n Device queues – set of processes waiting for an I/O

device.
n Processes migrate between the various queues.

Silberschatz, Galvin and Gagne 20024.9Operating System Concepts

Ready Queue And Various I/O Device Queues

Silberschatz, Galvin and Gagne 20024.10Operating System Concepts

Representation of Process Scheduling

Silberschatz, Galvin and Gagne 20024.11Operating System Concepts

Schedulers

n Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue.

n Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU.

Silberschatz, Galvin and Gagne 20024.12Operating System Concepts

Addition of Medium Term Scheduling

Silberschatz, Galvin and Gagne 20024.13Operating System Concepts

Schedulers (Cont.)

n Short-term scheduler is invoked very frequently
(milliseconds) ⇒ (must be fast).

n Long-term scheduler is invoked very infrequently
(seconds, minutes) ⇒ (may be slow).

n The long-term scheduler controls the degree of
multiprogramming.

n Processes can be described as either:
F I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.
F CPU-bound process – spends more time doing

computations; few very long CPU bursts.

Silberschatz, Galvin and Gagne 20024.14Operating System Concepts

Context Switch

n When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process.

n Context-switch time is overhead; the system does no
useful work while switching.

n Time dependent on hardware support.

Silberschatz, Galvin and Gagne 20024.15Operating System Concepts

Process Creation

n Parent process creates children processes, which, in turn
create other processes, forming a tree of processes.

n Resource sharing
F Parent and children share all resources.
F Children share subset of parent’s resources.
F Parent and child share no resources.

n Execution
F Parent and children execute concurrently.
F Parent waits until children terminate.

Silberschatz, Galvin and Gagne 20024.16Operating System Concepts

Process Creation (Cont.)

n Address space
F Child duplicate of parent.
F Child has a program loaded into it.

n UNIX examples
F fork system call creates new process
F fork returns 0 to child , process id of child for parent
F exec system call used after a fork to replace the process’

memory space with a new program.

Silberschatz, Galvin and Gagne 20024.17Operating System Concepts

Unix Program
#include <stdio.h >

main(int argc, char *argv[])

{ int pid;

pid=fork(); /* fork another process */

if (pid == 0) { /* child */

exclp(“/bin/ls”,”ls”,NULL);

}

else { /* parent */

wait(NULL); /* parent waits for child */

printf(“Child complete\n”);

exit(0);

}

}

Silberschatz, Galvin and Gagne 20024.18Operating System Concepts

Processes Tree on a UNIX System

Silberschatz, Galvin and Gagne 20024.19Operating System Concepts

Process Termination

n Process executes last statement and asks the operating
system to delete it (exit).
F Output data from child to parent (via wait).
F Process’ resources are deallocated by operating system.

n Parent may terminate execution of children processes
(abort).
F Child has exceeded allocated resources.
F Task assigned to child is no longer required.
F Parent is exiting.

4 Operating system does not allow child to continue if its
parent terminates.

4 Cascading termination.
F In Unix, if parent exits children are assigned init as parent

Silberschatz, Galvin and Gagne 20024.20Operating System Concepts

Cooperating Processes

n Independent process cannot affect or be affected by the
execution of another process.

n Cooperating process can affect or be affected by the
execution of another process

n Advantages of process cooperation
F Information sharing
F Computation speed-up
F Modularity
F Convenience

Silberschatz, Galvin and Gagne 20024.21Operating System Concepts

Producer-Consumer Problem

n Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process.
F unbounded-buffer places no practical limit on the size of the

buffer.
F bounded-buffer assumes that there is a fixed buffer size.

Silberschatz, Galvin and Gagne 20024.22Operating System Concepts

Bounded-Buffer – Shared-Memory Solution

n Shared data
#define BUFFER_SIZE 10
Typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

n Circular array
n Empty: in == out
n Full: ((in+1)%BUFFER_SIZE) == out
n Solution is correct, but can only use BUFFER_SIZE-1

elements

Silberschatz, Galvin and Gagne 20024.23Operating System Concepts

Bounded-Buffer – Producer Process

item nextProduced;

while (1) {
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

Silberschatz, Galvin and Gagne 20024.24Operating System Concepts

Bounded-Buffer – Consumer Process

item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}

Silberschatz, Galvin and Gagne 20024.25Operating System Concepts

Interprocess Communication (IPC)

n Mechanism for processes to communicate and to
synchronize their actions.

n Message system – processes communicate with each
other without resorting to shared variables.

n IPC facility provides two operations:
F send(message) – message size fixed or variable
F receive(message)

n If P and Q wish to communicate, they need to:
F establish a communication link between them
F exchange messages via send/receive

n Implementation of communication link
F physical (e.g., shared memory, hardware bus) considered

later
F logical (e.g., logical properties) now

Silberschatz, Galvin and Gagne 20024.26Operating System Concepts

Implementation Questions

n How are links established?
n Can a link be associated with more than two processes?
n How many links can there be between every pair of

communicating processes?
n What is the capacity of a link?
n Is the size of a message that the link can accommodate

fixed or variable?
n Is a link unidirectional or bi-directional?

Silberschatz, Galvin and Gagne 20024.27Operating System Concepts

Direct Communication

n Processes must name each other explicitly:
F send (P, message) – send a message to process P
F receive(Q, message) – receive a message from process Q

n Properties of communication link
F Links are established automatically.
F A link is associated with exactly one pair of communicating

processes.
F Between each pair there exists exactly one link.
F The link may be unidirectional, but is usually bi-directional.

n Asymmetric variant
F receive(id, message) – receive a message from any

process, pid stored in id

Silberschatz, Galvin and Gagne 20024.28Operating System Concepts

Indirect Communication

n Messages are directed and received from mailboxes (also
referred to as ports).
F Each mailbox has a unique id.
F Processes can communicate only if they share a mailbox.

n Properties of communication link
F Link established only if processes share a common mailbox
F A link may be associated with many processes.
F Each pair of processes may share several communication

links.
F Link may be unidirectional or bi-directional.

Silberschatz, Galvin and Gagne 20024.29Operating System Concepts

Indirect Communication

n Operations
F create a new mailbox
F send and receive messages through mailbox
F destroy a mailbox

n Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

Silberschatz, Galvin and Gagne 20024.30Operating System Concepts

Indirect Communication

n Mailbox sharing
F P1, P2, and P3 share mailbox A.
F P1, sends; P2 and P3 receive.
F Who gets the message?

n Solutions
F Allow a link to be associated with at most two processes.
F Allow only one process at a time to execute a receive

operation.
F Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.

Silberschatz, Galvin and Gagne 20024.31Operating System Concepts

Synchronization

n Message passing may be either blocking or non-blocking.
n Blocking is considered synchronous
n Non-blocking is considered asynchronous
n send and receive primitives may be either blocking or

non-blocking.

Silberschatz, Galvin and Gagne 20024.32Operating System Concepts

Buffering

n Queue of messages attached to the link; implemented in
one of three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).
2. Bounded capacity – finite length of n messages

Sender must wait if link full.
3. Unbounded capacity – infinite length

Sender never waits.

Exercise: Read about Mach and Windows 2000

Silberschatz, Galvin and Gagne 20024.33Operating System Concepts

Mach

n Mach kernel support creation of tasks – similar to processes but
with multiple threads of control

n IPC, even system calls, is by messages using mailboxes called
ports

n When task created, so are Kernel and Notify mailboxes
F The kernel communicates via kernel mailbox
F Events are notified via Notify mailbox

n Three system calls used for message transfer
F Msg_send, msg_receive, msg_rpc
F Msg_rcp executes RPC by sending a message and waiting for

exactly one return message
n Task creating mailbox using port_allocate owns/receives from it
n Messages from same sender are queued in FIFO order, but no

other guarantees given

Silberschatz, Galvin and Gagne 20024.34Operating System Concepts

Mach

n Message headers contain destination mailbox and mailbox for
replies

n If mailbox not full the sending thread continues (non-blocking)
n If full the sender can

F Wait until there is room
F Wait at most n millisecs
F Return immediately
F Cache the message is OS temporarily (one only)

n Receivers can receive from mailbox or mailbox set
n Similar options for receiver
n Can check # of msgs in mailbox with port_status syscall
n Mach avoids performance penalties associated with double

copy (to/from mailbox) by using virtual-memory techniques to
map message into receiver’s memory

Silberschatz, Galvin and Gagne 20024.35Operating System Concepts

Windows 2000

n W2000 consists of multiple subsystems which appl progs
communicate with using communication channels

n W2000 IPC is called local procedure call (LPC)
n W2000 uses connection ports (called objects and visible

to all processes) and communication ports
n Objects used to establish communication channels

F Client opens handle to port object
F Sends connection request
F Server creates 2 private comm ports, and returns handle to

one
F Client and server use handles to send/receive messages

Silberschatz, Galvin and Gagne 20024.36Operating System Concepts

Windows 2000

n Three types of message passing:
F For < 256 bytes, uses message queue as intermediate storage
F For large messages uses section object (shared memory)
F This is set up using small message with pointer to section

object and size

Silberschatz, Galvin and Gagne 20024.37Operating System Concepts

Client-Server Communication

n Sockets
n Remote Procedure Calls
n Remote Method Invocation (Java)

Silberschatz, Galvin and Gagne 20024.38Operating System Concepts

Sockets

n A socket is defined as an endpoint for communication.
n Concatenation of IP address and port
n The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8
n Communication is between a pair of sockets.

Silberschatz, Galvin and Gagne 20024.39Operating System Concepts

Socket Communication

Silberschatz, Galvin and Gagne 20024.40Operating System Concepts

Java Sockets

n Java provides 3 types of socket
F Connection-oriented (TCP) – Socket class
F Connectionless (UDP) – DatagramSocket class
F Multicast – MulticastSocket used to send to multiple clients

n Example: Time of day server
F Clients request time of day from localhost (127.0.0.1)
F Server listens on port 5155 with accept call
F Blocks on accept until client request arrives
F Creates new socket to communicate with client

Silberschatz, Galvin and Gagne 20024.41Operating System Concepts

Time of Day Server
import java.net.*; import java.io.*;
public class Server
{ public static void main(String[] args) throws IOException {

Socket client = null ; PrintWriter pout = null; ServerSocketsock=null;
try{

sock = new ServerSocket(5155); //now listen for connections
while(true){
client = sock.accept();
pout = new printWriter(client.getOutputStream (), true);
pout.println(new java.util.Date().toString());
pout.close();
client.close();

}
}
catch (IOException ioe) { System.err.println(ioe); }
finally { if (client != null) client.close();

if (sock != null) sock.close();
}

}
}

Silberschatz, Galvin and Gagne 20024.42Operating System Concepts

Client
import java.net.*; import java.io.*;
public class Client
{ public static void main(String[] args) throws IOException {

InputStream in = null; BufferedReader bin = null; Socket sock = null ;
try{

sock = new Socket(“127.0.0.1”, 5155);
in = sock.getInputStream ();
bin = new BufferedReader(new InputStreamReader(in));
String line;
while((line = bin.readLine()) != null)

System.out.println(line);
}

catch (IOException ioe) { System.err.println(ioe); }
finally { if (sock != null) sock.close(); }

}
}

Silberschatz, Galvin and Gagne 20024.43Operating System Concepts

Remote Procedure Calls

n Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

n Messages in RPC are addressed to daemons listening on ports
on a remote system

n Stubs – client-side proxy for the actual procedure on the server.
n The client-side stub locates the server and marshalls the

parameters.
n The server-side stub receives this message, unpacks the

marshalled parameters, and peforms the procedure on the
server.

n To avoid data representation problems (bigendian/littleendian)
many systems use XDR (external data representation)

n RPC can be used to implement a distributed file system (DFS)

Silberschatz, Galvin and Gagne 20024.44Operating System Concepts

Execution of RPC

Silberschatz, Galvin and Gagne 20024.45Operating System Concepts

Remote Method Invocation

n Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.

n RMI allows a Java program on one machine to invoke a
method on a remote object.

Silberschatz, Galvin and Gagne 20024.46Operating System Concepts

Marshalling Parameters

