Chapter 4: Processes

- Process Concept
- Process Scheduling
- Operations on Processes
- Cooperating Processes
- Interprocess Communication
- Communication in Client-Server Systems

Operating System Concepts

4.1

Silberschatz, Galvin and Gagne © 2002

Process Concept

- An operating system executes a variety of programs:
 - Batch system jobs
 - Time-shared systems user programs or tasks
- Textbook uses the terms *job* and *process* almost interchangeably.
- Process a program in execution; process execution must progress in sequential fashion.
- A process includes:
 - program counter
 - stack
 - data section

Process State

- As a process executes, it changes *state*
 - new: The process is being created.
 - running: Instructions are being executed.
 - waiting: The process is waiting for some event to occur.
 - ready: The process is waiting to be assigned to a
 - terminated: The process has finished execution.

JAK.

Operating System Concepts

4.3

Process Control Block (PCB)

Information associated with each process.

- Process ID
- Process state
- Program counter
- CPU registers
- CPU scheduling information
- Memory-management information
- Accounting information
- I/O status information

Operating System Concepts

4.5

Process Scheduling Queues

- Job queue set of all processes in the system.
- Ready queue set of all processes residing in main memory, ready and waiting to execute.
- Device queues set of processes waiting for an I/O device.
- Processes migrate between the various queues.

Schedulers

- Long-term scheduler (or job scheduler) selects which processes should be brought into the ready queue.
- Short-term scheduler (or CPU scheduler) selects which process should be executed next and allocates CPU.

Operating System Concepts

4.11

Schedulers (Cont.)

- Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast).
- Long-term scheduler is invoked very infrequently (seconds, minutes) ⇒ (may be slow).
- The long-term scheduler controls the *degree of multiprogramming*.
- Processes can be described as either:
 - I/O-bound process spends more time doing I/O than computations, many short CPU bursts.
 - CPU-bound process spends more time doing computations; few very long CPU bursts.

JAK.

Operating System Concepts

4.13

Silberschatz, Galvin and Gagne © 2002

Context Switch

- When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process.
- Context-switch time is overhead; the system does no useful work while switching.
- Time dependent on hardware support.

Process Creation

- Parent process creates children processes, which, in turn create other processes, forming a tree of processes.
- Resource sharing
 - Parent and children share all resources.
 - Children share subset of parent's resources.
 - Parent and child share no resources.
- Execution
 - Parent and children execute concurrently.
 - Parent waits until children terminate.

Operating System Concepts

4.15

Silberschatz, Galvin and Gagne © 2002

Process Creation (Cont.)

- Address space
 - Child duplicate of parent.
 - Child has a program loaded into it.
- UNIX examples
 - fork system call creates new process
 - fork returns 0 to child, process id of child for parent
 - exec system call used after a fork to replace the process' memory space with a new program.


```
#include <stdio.h >
main(int argc, char *argv[])
{ int pid;
    pid=fork(); /* fork another process */
    if (pid == 0) {/* child */
        exclp("/bin/ls","ls",NULL);
    }
    else { /* parent */
        wait(NULL); /* parent waits for child */
        printf("Child complete\n");
        exit(0);
    }
}
Operating System Concepts

#include <stdio.h >
main(int argc, char *argv[])

/* pid=fork(); /* fork another process */

if (pid == 0) { /* child */
        exclp("/bin/ls","ls",NULL);
    }

else { /* parent */
        wait(NULL); /* parent waits for child */
        printf("Child complete\n");
    exit(0);
}
```


Process Termination

- Process executes last statement and asks the operating system to delete it (exit).
 - Output data from child to parent (via wait).
 - Process' resources are deallocated by operating system.
- Parent may terminate execution of children processes (abort).
 - Child has exceeded allocated resources.
 - Task assigned to child is no longer required.
 - Parent is exiting.
 - Operating system does not allow child to continue if its parent terminates.
 - Cascading termination.
 - In Unix, if parent exits children are assigned init as parent

Operating System Concepts

4.19

Silberschatz, Galvin and Gagne © 2002

Cooperating Processes

- Independent process cannot affect or be affected by the execution of another process.
- Cooperating process can affect or be affected by the execution of another process
- Advantages of process cooperation
 - Information sharing
 - Computation speed-up
 - Modularity
 - Convenience

- Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process.
 - unbounded-buffer places no practical limit on the size of the buffer.
 - bounded-buffer assumes that there is a fixed buffer size.

Operating System Concepts

4.21

Silberschatz, Galvin and Gagne © 2002

Bounded-Buffer – Shared-Memory Solution

Shared data

```
#define BUFFER_SIZE 10
Typedef struct {
    ...
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
```

- Circular array
- Empty: in == out
- Full: ((in+1)%BUFFER_SIZE) == out
- Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer - Producer Process

```
while (1) {
    while (((in + 1) % BUFFER_SIZE) == out)
        ; /* do nothing */
    buffer[in] = nextProduced;
    in = (in + 1) % BUFFER_SIZE;
}
```

Operating System Concepts

4.23

Silberschatz, Galvin and Gagne © 2002

Bounded-Buffer – Consumer Process

item nextConsumed;

item nextProduced;

```
while (1) {
     while (in == out)
         ; /* do nothing */
     nextConsumed = buffer[out];
     out = (out + 1) % BUFFER_SIZE;
}
```

Interprocess Communication (IPC)

- Mechanism for processes to communicate and to synchronize their actions.
- Message system processes communicate with each other without resorting to shared variables.
- IPC facility provides two operations:
 - send(message) message size fixed or variable
 - receive(message)
- If *P* and *Q* wish to communicate, they need to:
 - establish a communication link between them
 - exchange messages via send/receive
- Implementation of communication link
 - physical (e.g., shared memory, hardware bus) considered later
 - logical (e.g., logical properties) now

Operating System Concepts

4.25

Silberschatz, Galvin and Gagne © 2002

Implementation Questions

- How are links established?
- Can a link be associated with more than two processes?
- How many links can there be between every pair of communicating processes?
- What is the capacity of a link?
- Is the size of a message that the link can accommodate fixed or variable?
- Is a link unidirectional or bi-directional?

Direct Communication

- Processes must name each other explicitly:
 - send (P, message) send a message to process P
 - receive(Q, message) receive a message from process Q
- Properties of communication link
 - Links are established automatically.
 - A link is associated with exactly one pair of communicating processes.
 - Between each pair there exists exactly one link.
 - The link may be unidirectional, but is usually bi-directional.
- Asymmetric variant
 - receive(id, message) receive a message from any process, pid stored in id

Operating System Concepts

4.27

Silberschatz, Galvin and Gagne © 2002

Indirect Communication

- Messages are directed and received from mailboxes (also referred to as ports).
 - Each mailbox has a unique id.
 - Processes can communicate only if they share a mailbox.
- Properties of communication link
 - Link established only if processes share a common mailbox
 - A link may be associated with many processes.
 - Each pair of processes may share several communication links
 - Link may be unidirectional or bi-directional.

Indirect Communication

- Operations
 - create a new mailbox
 - send and receive messages through mailbox
 - destroy a mailbox
- Primitives are defined as:
 send(A, message) send a message to mailbox A
 receive (A, message) receive a message from mailbox A

Operating System Concepts

4.29

Silberschatz, Galvin and Gagne © 2002

Indirect Communication

- Mailbox sharing
 - P_1 , P_2 , and P_3 share mailbox A.
 - P_1 , sends; P_2 and P_3 receive.
 - Who gets the message?
- Solutions
 - Allow a link to be associated with at most two processes.
 - Allow only one process at a time to execute a receive operation.
 - Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Synchronization

- Message passing may be either blocking or non-blocking.
- Blocking is considered synchronous
- Non-blocking is considered asynchronous
- send and receive primitives may be either blocking or non-blocking.

Operating System Concepts

4.31

Silberschatz, Galvin and Gagne © 2002

Buffering

- Queue of messages attached to the link; implemented in one of three ways.
 - 1. Zero capacity 0 messages
 Sender must wait for receiver (rendezvous).
 - 2. Bounded capacity finite length of *n* messages Sender must wait if link full.
 - 3. Unbounded capacity infinite length Sender never waits.

Exercise: Read about Mach and Windows 2000

Mach

- Mach kernel support creation of tasks similar to processes but with multiple threads of control
- IPC, even system calls, is by messages using mailboxes called ports
- When task created, so are *Kernel* and *Notify* mailboxes
 - The kernel communicates via kernel mailbox
 - Events are notified via Notify mailbox
- Three system calls used for message transfer
 - Msg_send, msg_receive, msg_rpc
 - Msg_rcp executes RPC by sending a message and waiting for exactly one return message
- Task creating mailbox using *port_allocate* owns/receives from it
- Messages from same sender are queued in FIFO order, but no other guarantees given

Operating System Concepts

4.33

Silberschatz, Galvin and Gagne © 2002

Mach

- Message headers contain destination mailbox and mailbox for replies
- If mailbox not full the sending thread continues (non-blocking)
- If full the sender can
 - Wait until there is room
 - Wait at most n millisecs
 - Return immediately
 - Cache the message is OS temporarily (one only)
- Receivers can receive from mailbox or *mailbox set*
- Similar options for receiver
- Can check # of msgs in mailbox with port status syscall
- Mach avoids performance penalties associated with double copy (to/from mailbox) by using virtual-memory techniques to map message into receiver's memory

Windows 2000

- W2000 consists of multiple subsystems which appl progs communicate with using communication channels
- W2000 IPC is called local procedure call (LPC)
- W2000 uses connection ports (called *objects* and visible to all processes) and communication ports
- Objects used to establish communication channels
 - Client opens handle to port object
 - Sends connection request
 - Server creates 2 private comm ports, and returns handle to one
 - Client and server use handles to send/receive messages

Operating System Concepts

4.35

Silberschatz, Galvin and Gagne © 2002

Windows 2000

- Three types of message passing:
 - For < 256 bytes, uses message queue as intermediate storage
 - For large messages uses section object (shared memory)
 - This is set up using small message with pointer to section object and size

Client-Server Communication

- Sockets
- Remote Procedure Calls
- Remote Method Invocation (Java)

Operating System Concepts

4.37

Silberschatz, Galvin and Gagne © 2002

Sockets

- A socket is defined as an *endpoint for communication*.
- Concatenation of IP address and port
- The socket **161.25.19.8:1625** refers to port **1625** on host **161.25.19.8**
- Communication is between a pair of sockets.

Java Sockets

- Java provides 3 types of socket
 - Connection-oriented (TCP) Socket class
 - Connectionless (UDP) DatagramSocket class
 - Multicast MulticastSocket used to send to multiple clients
- Example: Time of day server
 - Clients request time of day from localhost (127.0.0.1)
 - Server listens on port 5155 with accept call
 - Blocks on accept until client request arrives
 - Creates new socket to communicate with client

```
Time of Day Server
      import java.net.*; import java.io.*;
      public class Server
      { public static void main(String[] args) throws IOException {
           Socket client = null; PrintWriter pout = null; ServerSocketsock=null;
                sock = new ServerSocket(5155); //now listen for connections
                while(true){
                 client = sock.accept();
                 pout = new printWriter(client.getOutputStream (), true);
                 pout.println(new java.util.Date().toString());
                 pout.close();
                 client.close();
           catch (IOException ioe) { System.err.println(ioe); }
           finally { if (client != null) client.close();
                   if (sock != null) sock.close();
                                                         Silberschatz, Galvin and Gagne © 2002
Operating System Concepts
                                           4.41
```

```
Client
       import java.net.*; import java.io.*;
       public class Client
       { public static void main(String[] args) throws IOException {
           InputStream in = null; BufferedReader bin = null; Socket sock = null;
            try{
                 sock = new Socket("127.0.0.1", 5155);
                 in = sock.getInputStream();
                 bin = new BufferedReader( new InputStreamReader(in));
                 String line;
                 while( (line = bin.readLine()) != null)
                    System.out.println(line);
           catch (IOException ioe) { System.err.println(ioe); }
           finally { if (sock != null) sock.close(); }
Operating System Concepts
                                                          Silberschatz, Galvin and Gagne © 2002
```


- Remote procedure call (RPC) abstracts procedure calls between processes on networked systems.
- Messages in RPC are addressed to daemons listening on ports on a remote system
- **Stubs** client-side proxy for the actual procedure on the server.
- The client-side stub locates the server and *marshalls* the parameters.
- The server-side stub receives this message, unpacks the marshalled parameters, and peforms the procedure on the server.
- To avoid data representation problems (bigendian/littleendian) many systems use XDR (external data representation)
- RPC can be used to implement a distributed file system (DFS)

Operating System Concepts

4.43

- Remote Method Invocation (RMI) is a Java mechanism similar to RPCs.
- RMI allows a Java program on one machine to invoke a method on a remote object.

