

admitted interrupt terminated

scheduler dispatch
1/0 or event completion 1/0 or event wait

Process Control Block (PCB)

Information associated with each process.
® Process ID

B Process state

B Program counter

m CPU registers

B CPU scheduling information

B Memory-management information

B Accounting information

B |/O status information

-
b
[

M)
' ; ; l&‘-%' -
Operating System Concepts 45 Silberschatz, Galvin and Gagne O 2002 Bt

Process Control Block (PCB)

process
state

pointer

process number

program counter

registers

memory limits

list of open files

e
A
ll-
w)
. . , s BT
Operating System Concepts 4.6 Silberschatz, Galvin and Gagne O 2002 0

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing ﬂ
T save state into PCB,,
reload state from PCB, 1

interrupt or system call

N
save state into PCB,

J reload state from PCB,

executing U .,\\

M)
' ; ; l&‘g -
Operating System Concepts 4.7 Silberschatz, Galvin and Gagne O 2002 Bt

idle

> idle executing

<

idle

Process Scheduling Queues

® Job queue — set of all processes in the system.

® Ready queue — set of all processes residing in main
memory, ready and waiting to execute.

B Device queues — set of processes waiting for an I/O
device.

B Processes migrate between the various queues.

e
A
ll-
w)
. . , s BT
Operating System Concepts 4.8 Silberschatz, Galvin and Gagne O 2002 0

-Ready Queue And Various I/0O Device Queues

queue header PCB, PCB,

ready head > > —=
queue tail N registers registers

mag head +—a

tape — =
unito @l

tmag head T—=a

ape =
s W 1. PCB PCB,, PCB,

T > —=

disk head 1

unit 0 tail
PCBy
terminal head -t =
unit 0 w4+
N
A
lr
w)
| | | P
Operating System Concepts 4.9 Silberschatz, Galvin and Gagne O 2002 Bt

Representation of Process Scheduling

: ready queue |r

»{ CPU ,

1/0 queue |4—| 1/0 request |<—

interrupt

\\occurs

child
executes

time slice 8
expired

fork a B
child

wait for an <
interrupt

Operating System Concepts

s
A
ll-
w)
. , s BT
Silberschatz, Galvin and Gagne O 2002 o

Schedulers

® Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue.

B Short-term scheduler (or CPU scheduler) — selects which
process should be executed next and allocates CPU.

-
b
[

M)
' ; ; l&‘g -
Operating System Concepts 4.11 Silberschatz, Galvin and Gagne O 2002 Bt

Addition of Medium Term Scheduling

swap in partially executed 5 swap out
swapped-out processes

» ready queue L =,‘ CPU A » end

1/0 waiting
queues

s
A
ll-
w)
. , s BT
Silberschatz, Galvin and Gagne O 2002 o

Operating System Concepts 4.12

Unix Program

ude <stdio.h>
main(intargc, char *argv{])
{ intpid;
pid=fork(); /* fork another process */
if (pid == 0) { /* child */
exclp(“/bin/ls”,"Is”,NULL);
}
else { /* parent */
wait(NULL); /* parent waits for child */
printf(“Child complete\n”);
exit(0);

i
' ') &‘-% -
Operating System Concepts 4.17 Silberschatz, Galvin and Gagne O 2002 Bt

Processes Tree on a UNIX System

root

pagedaemon I swapper init I
user 1 user2 I user 3 I

ijﬂ
T

A
ll-
o
. . , P
Operating System Concepts 4.18 Silberschatz, Galvin and Gagne O 2002 0 1

}}I

}

Interprocess Communication (IPC)

B Mechanism for processes to communicate and to

synchronize their actions.

B Message system — processes communicate with each

other without resorting to shared variables.

m |PC facility provides two operations:
send(message) — message size fixed or variable
receive(message)

m [f P and Q wish to communicate, they need to:
establish a communication link between them
exchange messages via send/receive

B |mplementation of communication link

physical (e.g., shared memory, hardware bus) considered
later

logical (e.g., logical properties) now -
l

i
) :) é‘-% e
Operating System Concepts 4.25 Silberschatz, Galvin and Gagne O 2002 Bt

Implementation Questions

m How are links established?
Can a link be associated with more than two processes?

B How many links can there be between every pair of
communicating processes?

® What is the capacity of a link?

m |[s the size of a message that the link can accommodate
fixed or variable?

B |[s a link unidirectional or bi-directional?

e
A
ll-
w)
. . , P
Operating System Concepts 4.26 Silberschatz, Galvin and Gagne O 2002 0 1

Direct Communication

B Processes must name each other explicitly:
send (P, message) —send a message to process P
receive(Q, message) — receive a message from process Q
B Properties of communication link
Links are established automatically.

A link is associated with exactly one pair of communicating
processes.

Between each pair there exists exactly one link.
The link may be unidirectional, but is usually bi-directional.
B Asymmetric variant

receive(id, message) — receive a message from any
process, pid stored in id

-
b
[

i
) :) é‘-% e
Operating System Concepts 4.27 Silberschatz, Galvin and Gagne O 2002 Bt

Indirect Communication

B Messages are directed and received from mailboxes (also
referred to as ports).
Each mailbox has a unique id.
Processes can communicate only if they share a mailbox.
B Properties of communication link
Link established only if processes share a common mailbox
A link may be associated with many processes.

Each pair of processes may share several communication
links.

Link may be unidirectional or bi-directional.

e
A
ll-
w)
. . , P
Operating System Concepts 4.28 Silberschatz, Galvin and Gagne O 2002 0 1

Mach

Mach kernel support creation of tasks — similar to processes but
with multiple threads of control
IPC, even system calls, is by messages using mailboxes called
ports
When task created, so are Kernel and Notify mailboxes

The kernel communicates via kernel mailbox

Events are notified via Notify mailbox

Three system calls used for message transfer
Msg_send, msg_receive, msg_rpc
Msg_rcp executes RPC by sending a message and waiting for
exactly one return message

Task creating mailbox using port_allocate owns/receives from it

Messages from same sender are queued in FIFO order, but no
other guarantees given

-
b
[

M)
' ; ; l&‘g -
Operating System Concepts 4.33 Silberschatz, Galvin and Gagne O 2002 Bt

Mach

B Message headers contain destination mailbox and mailbox for
replies
m [f mailbox not full the sending thread continues (non-blocking)
m [f full the sender can
Wait until there is room
Wait at most nmillisecs
Return immediately
Cache the message is OS temporarily (one only)
Receivers can receive from mailbox or mailbox set
Similar options for receiver
Can check # of msgs in mailbox with port_status syscall
Mach avoids performance penalties associated with double

copy (to/from mailbox) by using virtual-memory techniques to
map message into receiver's memory

e
A
ll-
w)
. . , s BT
Operating System Concepts 4.34 Silberschatz, Galvin and Gagne O 2002 0

Socket Communication

host X

(146.86.5.20)

socket
(146.86.5.2/1625) web server

(161.25.19.8)

socket
(161.25.19.8/80)

w
) :) é‘-% e
Operating System Concepts 4.39 Silberschatz, Galvin and Gagne O 2002 Bt

Java Sockets

m Java provides 3 types of socket

Connection-oriented (TCP) — Socket class

Connectionless (UDP) — DatagramSocket class

Multicast — MulticastSocket used to send to multiple clients
B Example: Time of day server

Clients request time of day fromlocalhost (127.0.0.1)

Server listens on port 5155 with accept call

Blocks on accept until client request arrives

Creates new socket to communicate with client

e
A
ll-
w)
. . , P
Operating System Concepts 4.40 Silberschatz, Galvin and Gagne O 2002 0 1

Time of Day Server

import java.net.*; import java.io.*;
public class Server
{ public static void main(String[] args) throws IOException {
Socket client = null ; PrintWriter pout = null; ServerSocketsock=null;
try{
sock = new ServerSocket(5155); //now listen for connections
while(true){
client = sock.accept();
pout = new printWriter(client.getOutputStream (), true);
pout.printin(new java.util.Date().toString());
pout.close();
client.close();
}
}
catch (IOException ioe) { System.err.printin(ioe); }
finally { if (client !=null) client.close();
if (sock != null) sock.close();
}

S
} iy
} k
w
| | | R
Operating System Concepts 4.41 Silberschatz, Galvin and Gagne O 2002 Bt

Client

import java.net.*; import java.io.*;

public class Client

{ public static void main(String[] args) throws IOException {

InputStream in = null; BufferedReader bin = null; Socket sock = null ;

try{
sock = new Socket(“127.0.0.1", 5155);
in = sock.getinputStream ();
bin = new BufferedReader(new InputStreamReader(in));
String line;
while((line = bin.readLine()) != null)
System.out.printin(line);
}

catch (IOException ioe) { System.err.printin(ioe); }
finally { if (sock != null) sock.close(); }
}
}

e
A
ll-
w)
. . , P
Operating System Concepts 4.42 Silberschatz, Galvin and Gagne O 2002 0 1

Remote Procedure Calls

m Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

m Messages in RPC are addressed to daemons listening on ports
on aremote system
Stubs — clientsside proxy for the actual procedure on the server.
The client-side stub locates the server and marshalls the
parameters.

m The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on the
server.

m To avoid data representation problems (bigendian/littleendian)
many systems use XDR (external data representation)

m RPC can be used to implement a distributed file system (DFS)

-
b
[

i
' ') &‘-% -
Operating System Concepts 4.43 Silberschatz, Galvin and Gagne O 2002 Bt

Execution of RPC

client messages server
user calls kernel
to send RPC
message to
procedure X
kernel sends From: olent matchmaker
message to Port ey receives
matchmaker to "Ra e message, looks
find por
ind port number T up answer

l

From: server

kernel places
port Pin user To: client matchmaker
RPC Port: kernel replies to client
message Re: RPC X with port P
Port: P

From: clent daemon
fieipelecios To: server listening to
RPC Port: port P port Preceives

<contents> message

daemon
processes
request and
processes send
output

! N

From: RPC
kernel receives Port: PTo:
reply, passes

itto user

client
Port: kernel
<output>

A
ll-
o
. . , P
Operating System Concepts 4.44 Silberschatz, Galvin and Gagne O 2002 0 1

Remote Method Invocation

B Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.

® RMI allows a Java program on one machine to invoke a
method on a remote object.

JVM
Py JVM
Java re
orogram Mote Methog invocay,
on
® remote | /
object /

-
b
[

M)
| | | o BT
Operating System Concepts 4.45 Silberschatz, Galvin and Gagne O 2002 Bt

Marshalling Parameters

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{ implementation of someMethod

}

| stub" | skeleton

A A

| A, B, someMethod |

| boolean return value|

e
A
ll-
w)
. . , s BT
Operating System Concepts 4.46 Silberschatz, Galvin and Gagne O 2002 0

