
1

Silberschatz, Galvin and Gagne 20025.1Operating System Concepts

Chapter 5: Threads

n Overview
n Multithreading Models
n Threading Issues
n Pthreads
n Solaris 2 Threads
n Windows 2000 Threads
n Linux Threads
n Java Threads

Silberschatz, Galvin and Gagne 20025.2Operating System Concepts

Single and Multithreaded Processes

Threads are lightweight processes – have own thread ID, PC, registers, stack

2

Silberschatz, Galvin and Gagne 20025.3Operating System Concepts

Benefits

n Responsiveness
F Can run even if one thread blocked or busy
F Web browser example – one thread per client

n Resource Sharing
n Economy

F Creating and context switching threads is low cost
F Solaris 2 : creating 30x, context switch 5x slower for procs

n Utilization of MP Architectures
F Run each thread on different CPU

Silberschatz, Galvin and Gagne 20025.4Operating System Concepts

User Threads

n Thread management done by user-level threads library
n No need for kernel intervention
n Drawback : all may run in single process. If one blocks, all

block.
n Examples

- POSIX Pthreads
- Mach C-threads
- Solaris threads

3

Silberschatz, Galvin and Gagne 20025.5Operating System Concepts

Kernel Threads

n Supported by the Kernel
n Generally slower to create than user threads
n If one blocks another in the application can be run
n Can be scheduled on different CPUs in multiprocessor
n Examples

- Windows 95/98/NT/2000
- Solaris
- Tru64 UNIX
- BeOS
- Linux

Silberschatz, Galvin and Gagne 20025.6Operating System Concepts

Multithreading Models

n Many-to-One

n One-to-One

n Many-to-Many

4

Silberschatz, Galvin and Gagne 20025.7Operating System Concepts

Many-to-One

n Many user-level threads mapped to single kernel thread.

n Used on systems that do not support kernel threads.

Silberschatz, Galvin and Gagne 20025.8Operating System Concepts

Many-to-One Model

5

Silberschatz, Galvin and Gagne 20025.9Operating System Concepts

One-to-One

n Each user-level thread maps to kernel thread.

n Examples
- Windows 95/98/NT/2000
- OS/2

Silberschatz, Galvin and Gagne 20025.10Operating System Concepts

One-to-one Model

6

Silberschatz, Galvin and Gagne 20025.11Operating System Concepts

Many-to-Many Model

n Allows many user level threads to be mapped to many
kernel threads.

n Allows the operating system to create a sufficient number
of kernel threads.

n Solaris 2
n IRIX
n HP-UX
n Tru64 Unix
n Windows NT/2000 with the ThreadFiber package

Silberschatz, Galvin and Gagne 20025.12Operating System Concepts

Many-to-Many Model

7

Silberschatz, Galvin and Gagne 20025.13Operating System Concepts

Threading Issues

n Semantics of fork() and exec() system calls
F Duplicate all threads or not
F Exec replaces all threads
F If call exec next no need to duplicate all threads.

n Thread cancellation.
F Asynchronous or deferred (target thread checks periodically)
F Resource reclamation problem

n Thread pools
F Create pool of threads to do work
F When server receives request awakens thread. Returns on finish.
F Advantages:

4 Faster than creating threads
4 Limits number of threads in server and hence load on CPU

n Thread specific data

Silberschatz, Galvin and Gagne 20025.14Operating System Concepts

Threading Issues

n Signal handling
F Signals can be synchronous (e.g. illegal memory access) or

asynchronous (e.g. i/o completion, ^C)
F Handled by default handler or user-defined handler
F Where should the thread be delivered?

4 To thread to which applies (synchronous signals)
4 To all threads in process
4 To certain threads in process
4 Assign a specific thread to receive all signals (Solaris 2)

8

Silberschatz, Galvin and Gagne 20025.15Operating System Concepts

Pthreads

n a POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization.

n API specifies behavior of the thread library,
implementation is up to developer of the library.

n Common in UNIX operating systems.

Silberschatz, Galvin and Gagne 20025.16Operating System Concepts

Pthreads example
#include <pthread.h >
#include <stdio.h >
int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* the thread */
main(int argc, char *argv[])
{
pthread_t tid; /* the thread identifier */
pthread_attr_t attr; /* set of attributes for the thread */
if (argc != 2) {

fprintf(stderr,"usage: a.out <integer value>\n");
exit();

}
if (atoi(argv[1]) < 0) {

fprintf(stderr,"Argument %d must be non-negative\n",atoi(argv[1]));
exit();

}
pthread_attr_init(&attr); /* get the default attributes */
pthread_create(&tid,&attr,runner,argv[1]); /* create the thread */
pthread_join(tid,NULL); /* now wait for the thread to exit */
printf("sum = %d\n",sum);
}

9

Silberschatz, Galvin and Gagne 20025.17Operating System Concepts

Pthreads example (ctd.)

/**
* The thread will begin control in this function
*/
void *runner(void *param)
{
int upper = atoi(param);
int i;
sum = 0;

if (upper > 0) {
for (i = 1; i <= upper; i++)

sum += i;
}
pthread_exit(0);

}

Silberschatz, Galvin and Gagne 20025.18Operating System Concepts

Solaris 2 Threads

n User and Kernel level threads, Light weight processes (LWP)
n Process : one or more LWPs
n Each LWP has kernel thread
n One LWP is needed for each user thread that may block
n If kernel thread blocks, LWP, and user level thread also block
n If all LWPs in process block, but there are user level threads

which could run, kernel creates new LWP
n Kernel “ages” LWPs and deletes unused ones after +-5 min
n Kernel threads may be bound to particular CPU

10

Silberschatz, Galvin and Gagne 20025.19Operating System Concepts

Solaris 2 Threads

Silberschatz, Galvin and Gagne 20025.20Operating System Concepts

Solaris Process

11

Silberschatz, Galvin and Gagne 20025.21Operating System Concepts

Windows 2000 Threads

n Implements the one-to-one mapping.
n Each thread contains

- a thread id
- register set
- separate user and kernel stacks
- private data storage area

Silberschatz, Galvin and Gagne 20025.22Operating System Concepts

Linux Threads

n Linux refers to them as tasks rather than threads.
n Thread creation is done through clone() system call.
n Clone() allows a child task to share the address space of

the parent task (process)
n The amount of parent process shared is determined by a

set of flags passed as parameter in clone() call
F None set, no sharing clone() is fork()
F All set, everything shared

12

Silberschatz, Galvin and Gagne 20025.23Operating System Concepts

Java Threads

n Java threads may be created by:

F Extending Thread class
F Implementing the Runnable interface

n Java threads are managed by the JVM.

Silberschatz, Galvin and Gagne 20025.24Operating System Concepts

Java Thread States

13

Silberschatz, Galvin and Gagne 20025.25Operating System Concepts

Java Thread Example

public class Summation extends Thread
{

public Summation(int n) {
upper = n;

}
public void run() {

int sum = 0;
if (upper > 0) {

for (int i = 1; i <= upper; i++)
sum += i;

}
System.out.println("The summation of " + upper + " is " + sum);

}

private int upper;
}

Silberschatz, Galvin and Gagne 20025.26Operating System Concepts

Java Thread Example (ctd.)

public class ThreadTester
{

public static void main(String[] args) {
if (args.length > 0) {

if (Integer.parseInt(args[0]) < 0)
System.err.println(args[0] + " must be non-negative.");

else {
Summation thrd = new Summation(Integer.parseInt(args[0]));
thrd.start();

}
}
else

System.err.println("Usage: Summation <integer value>");
}

}

