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Chapter 5: Threads

n Overview
n Multithreading Models
n Threading Issues
n Pthreads
n Solaris 2 Threads
n Windows 2000 Threads
n Linux Threads
n Java Threads
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Single and Multithreaded Processes

Threads are lightweight processes – have own thread ID, PC, registers, stack
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Benefits

n Responsiveness
F Can run even if one thread blocked or busy
F Web browser example – one thread per client

n Resource Sharing
n Economy

F Creating and context switching threads is low cost
F Solaris 2 : creating 30x, context switch 5x slower for procs

n Utilization of MP Architectures
F Run each thread on different CPU
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User Threads

n Thread management done by user-level threads library
n No need for kernel intervention
n Drawback : all may run in single process. If one blocks, all 

block.
n Examples

- POSIX Pthreads
- Mach C-threads
- Solaris threads
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Kernel Threads

n Supported by the Kernel
n Generally slower to create than user threads
n If one blocks another in the application can be run
n Can be scheduled on different CPUs in multiprocessor
n Examples

- Windows 95/98/NT/2000
- Solaris
- Tru64 UNIX
- BeOS
- Linux
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Multithreading Models

n Many-to-One

n One-to-One

n Many-to-Many
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Many-to-One

n Many user-level threads mapped to single kernel thread.

n Used on systems that do not support kernel threads.
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Many-to-One Model
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One-to-One

n Each user-level thread maps to kernel thread.

n Examples
- Windows 95/98/NT/2000
- OS/2
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One-to-one Model
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Many-to-Many Model

n Allows many user level threads to be mapped to many 
kernel threads.

n Allows the  operating system to create a sufficient number 
of kernel threads.

n Solaris 2 
n IRIX
n HP-UX
n Tru64 Unix
n Windows NT/2000 with the ThreadFiber package
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Many-to-Many Model



7

Silberschatz, Galvin and  Gagne 20025.13Operating System Concepts

Threading Issues

n Semantics of fork() and exec() system calls
F Duplicate all threads or not
F Exec replaces all threads
F If call exec next no need to duplicate all threads.

n Thread cancellation.
F Asynchronous or deferred (target thread checks periodically)
F Resource reclamation problem

n Thread pools
F Create pool of threads to do work
F When server receives request awakens thread. Returns on finish.
F Advantages:

4 Faster than creating threads
4 Limits number of threads in server and hence load on CPU

n Thread specific data
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Threading Issues

n Signal handling
F Signals can be synchronous (e.g. illegal memory access) or 

asynchronous (e.g. i/o completion, ^C)
F Handled by default handler or user-defined handler
F Where should the thread be delivered?

4 To thread to which applies (synchronous signals)
4 To all threads in process
4 To certain threads in process
4 Assign a specific thread to receive all signals (Solaris 2)
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Pthreads

n a POSIX standard (IEEE 1003.1c) API for thread creation 
and synchronization.

n API specifies behavior of the thread library, 
implementation is up to developer of the library.

n Common in UNIX operating systems.
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Pthreads example
#include <pthread.h >
#include <stdio.h >
int sum;                             /* this data is shared by the thread(s) */
void *runner(void *param );                                      /* the thread */
main(int argc, char *argv[])
{
pthread_t tid;               /* the thread identifier */
pthread_attr_t attr;      /* set of attributes for the thread */
if (argc != 2) {

fprintf(stderr,"usage: a.out <integer value>\n");
exit();

}
if (atoi(argv[1]) < 0) {

fprintf(stderr,"Argument %d must be non-negative\n",atoi(argv[1]));
exit();

}
pthread_attr_init(&attr);                           /* get the default attributes */
pthread_create(&tid,&attr,runner,argv[1]);         /* create the thread */
pthread_join(tid,NULL);                 /* now wait for the thread to exit */
printf("sum = %d\n",sum);
}
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Pthreads example (ctd.)

/**
* The thread will begin control in this function
*/
void *runner(void *param ) 
{
int upper = atoi(param );
int i;
sum = 0;

if (upper > 0) {
for (i = 1; i <= upper; i++)

sum += i;
}
pthread_exit(0);

}
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Solaris 2 Threads

n User and Kernel level threads, Light weight processes (LWP)
n Process : one or more LWPs
n Each LWP has kernel thread
n One LWP is needed for each user thread that may block
n If kernel thread blocks, LWP, and user level thread also block
n If all LWPs in process block, but there are user level threads 

which could run, kernel creates new LWP
n Kernel “ages” LWPs and deletes unused ones after +-5 min
n Kernel threads may be bound to particular CPU
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Solaris 2 Threads
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Solaris Process
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Windows 2000 Threads

n Implements the one-to-one mapping.
n Each thread contains

- a thread id
- register set
- separate user and kernel stacks
- private data storage area
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Linux Threads

n Linux refers to them as tasks rather than threads.
n Thread creation is done through clone() system call.
n Clone() allows a child task to share the address space of 

the parent task (process)
n The amount of parent process shared is determined by a 

set of flags passed as parameter in clone() call
F None set, no sharing clone() is fork()
F All set, everything shared
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Java Threads

n Java threads may be created by:

F Extending Thread class
F Implementing the Runnable interface

n Java threads are managed by the JVM.
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Java Thread States 
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Java Thread Example

public class Summation extends Thread
{

public Summation(int n) {
upper = n;

}
public void run() {

int sum = 0;
if (upper > 0) {

for (int i = 1; i <= upper; i++)
sum += i;

}
System.out.println("The summation of " + upper + " is " + sum);

}

private int upper;
}
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Java Thread Example (ctd.)

public class ThreadTester
{

public static void main(String[] args) {
if (args.length > 0) {

if (Integer.parseInt(args[0]) < 0)
System.err.println(args[0] + " must be non-negative.");

else {
Summation thrd = new  Summation(Integer.parseInt(args[0]));
thrd.start();

}
}
else 

System.err.println("Usage: Summation <integer value>");
}       

}


