
1

Silberschatz, Galvin and Gagne 20026.1Operating System Concepts

Chapter 6: CPU Scheduling

n Basic Concepts
n Scheduling Criteria
n Scheduling Algorithms
n Multiple-Processor Scheduling
n Real-Time Scheduling
n Algorithm Evaluation

2

Silberschatz, Galvin and Gagne 20026.2Operating System Concepts

Basic Concepts

n Maximum CPU utilization obtained with multiprogramming
n CPU–I/O Burst Cycle – Process execution consists of a

cycle of CPU execution and I/O wait.
n CPU burst distribution

3

Silberschatz, Galvin and Gagne 20026.3Operating System Concepts

Alternating Sequence of CPU And I/O Bursts

4

Silberschatz, Galvin and Gagne 20026.4Operating System Concepts

Histogram of CPU-burst Times

5

Silberschatz, Galvin and Gagne 20026.5Operating System Concepts

CPU (Short-term) Scheduler

n Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

n CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.

n Scheduling under 1 and 4 is nonpreemptive
F Process retains CPU until it releases it
F Windows 3.1, MAC OS

n All other scheduling is preemptive.

6

Silberschatz, Galvin and Gagne 20026.6Operating System Concepts

Issues with Preemptive Scheduling

n New mechanisms needed to ensure shared data is not in
an inconsistent state (partially updated)

n System calls may change important kernel parameters
F What happens if process preempted

n Unix (most versions) wait for system call to complete or
i/o block to take place

n Also interrupts must be guarded from simultaneous use
F Interrupts disabled at entry, reenabled at exit

n These are bad features for real time or multiprocessor
systems

7

Silberschatz, Galvin and Gagne 20026.7Operating System Concepts

Dispatcher

n Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:
F switching context
F switching to user mode
F jumping to the proper location in the user program to restart

that program

n Dispatch latency – time it takes for the dispatcher to stop
one process and start another running.

8

Silberschatz, Galvin and Gagne 20026.8Operating System Concepts

Scheduling Criteria

n CPU utilization – keep the CPU as busy as possible
n Throughput – # of processes that complete their

execution per time unit
n Turnaround time – amount of time to execute a particular

process
n Waiting time – amount of time a process has been waiting

in the ready queue
n Response time – amount of time it takes from when a

request was submitted until the first response is
produced, not output (for time-sharing environment)

9

Silberschatz, Galvin and Gagne 20026.9Operating System Concepts

Optimization Criteria

n Max CPU utilization
n Max throughput
n Min turnaround time
n Min waiting time
n Min response time
n In theory minimize variance in response time

10

Silberschatz, Galvin and Gagne 20026.10Operating System Concepts

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

n Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

n Waiting time for P1 = 0; P2 = 24; P3 = 27
n Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

11

Silberschatz, Galvin and Gagne 20026.11Operating System Concepts

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P2 , P3 , P1 .

n The Gantt chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0; P3 = 3
n Average waiting time: (6 + 0 + 3)/3 = 3
n Much better than previous case.
n Convoy effect short process behind long process

P1P3P2

63 300

12

Silberschatz, Galvin and Gagne 20026.12Operating System Concepts

Shortest-Job-First (SJR) Scheduling

n Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

n Two schemes:
F nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.
F preemptive – if a new process arrives with CPU burst length

less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

n SJF is optimal – gives minimum average waiting time for
a given set of processes.

13

Silberschatz, Galvin and Gagne 20026.13Operating System Concepts

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n SJF (non-preemptive)

n Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

14

Silberschatz, Galvin and Gagne 20026.14Operating System Concepts

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n SJF (preemptive)

n Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

15

Silberschatz, Galvin and Gagne 20026.15Operating System Concepts

Determining Length of Next CPU Burst

n Can only estimate the length.
n Can be done by using the length of previous CPU bursts,

using exponential averaging.

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .1 1 nnn t ταατ −+=+

16

Silberschatz, Galvin and Gagne 20026.16Operating System Concepts

Prediction of the Length of the
Next CPU Burst

17

Silberschatz, Galvin and Gagne 20026.17Operating System Concepts

Examples of Exponential Averaging

n α =0
F τn+1 = τn

F Recent history does not count.

n α =1
F τn+1 = tn
F Only the actual last CPU burst counts.

n If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α)j α tn -1 + …
+(1 - α)n=1 tn τ0

n Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor.

18

Silberschatz, Galvin and Gagne 20026.18Operating System Concepts

Priority Scheduling

n A priority number (integer) is associated with each
process

n The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority!! maybe).
F Preemptive
F nonpreemptive

n SJF is a priority scheduling where priority is the inverse of
the predicted next CPU burst time.

n Problem ≡ Starvation (indefinite postponement) – low
priority processes may never execute.

n Solution ≡ Aging – as time progresses increase the
priority of the process.

19

Silberschatz, Galvin and Gagne 20026.19Operating System Concepts

Round Robin (RR)

n Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

n If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

n Performance
F q large ⇒ FIFO
F q small ⇒ q must be large with respect to context switch,

otherwise overhead is too high.

20

Silberschatz, Galvin and Gagne 20026.20Operating System Concepts

Example of RR with Time Quantum = 20

Process Burst Time

P1 53
P2 17
P3 68
P4 24

n The Gantt chart is:

n Typically, higher average turnaround than SJF, but better
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

21

Silberschatz, Galvin and Gagne 20026.21Operating System Concepts

Time Quantum and Context Switch Time

22

Silberschatz, Galvin and Gagne 20026.22Operating System Concepts

Turnaround Time Varies With The Time Quantum

23

Silberschatz, Galvin and Gagne 20026.23Operating System Concepts

Multilevel Queue

n Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

n Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

n Scheduling must be done between the queues.
F Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
F Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

F 20% to background in FCFS

24

Silberschatz, Galvin and Gagne 20026.24Operating System Concepts

Multilevel Queue Scheduling

25

Silberschatz, Galvin and Gagne 20026.25Operating System Concepts

Multilevel Feedback Queue

n A process can move between the various queues; aging
can be implemented this way.

n Multilevel-feedback-queue scheduler defined by the
following parameters:
F number of queues
F scheduling algorithms for each queue
F method used to determine when to upgrade a process
F method used to determine when to demote a process
F method used to determine which queue a process will enter

when that process needs service

26

Silberschatz, Galvin and Gagne 20026.26Operating System Concepts

Example of Multilevel Feedback Queue

n Three queues:
F Q0 – time quantum 8 milliseconds
F Q1 – time quantum 16 milliseconds
F Q2 – FCFS

n Scheduling
F A new job enters queue Q0 which is served FCFS. When it

gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q1.

F At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q2.

27

Silberschatz, Galvin and Gagne 20026.27Operating System Concepts

Multilevel Feedback Queues

28

Silberschatz, Galvin and Gagne 20026.28Operating System Concepts

Multiple-Processor Scheduling

n CPU scheduling more complex when multiple CPUs are
available.

n Assume:
F Homogeneous processors within a multiprocessor.
F Uniform memory access (UMA)

n Load sharing - use common ready queue
F Symmetric – each processor examines ready queue

n Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the need
for data sharing protection.

29

Silberschatz, Galvin and Gagne 20026.29Operating System Concepts

Real-Time Scheduling

n Hard real-time systems – required to complete a critical
task within a guaranteed amount of time.
F Need special purpose software on dedicated hardware
F No secondary storage or virtual memory

n Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.
F Need priority scheduling
F Need small dispatch latency –difficult
F Unix: context switch only when systems calls complete or

I/O blocks
F Can insert preemption points in system calls
F Or make kernel preemptible
F Read more on this.

30

Silberschatz, Galvin and Gagne 20026.30Operating System Concepts

Dispatch Latency

Conflict phase: preempt kernel processes/ release low priority
process resources needed by higher priority processes

31

Silberschatz, Galvin and Gagne 20026.31Operating System Concepts

Algorithm Evaluation

n Deterministic modeling – takes a particular predetermined
workload and defines the performance of each algorithm
for that workload.

n Queueing models – obtain probability distribution from
measured CPU and I/O bursts. Treat computer as
network of queues of waiting processes with known
arrival and service rates

n Simulations – represent components by software data
structures.
F Use random number generator to generate data.
F Use trace tapes

n Implementation

32

Silberschatz, Galvin and Gagne 20026.32Operating System Concepts

Evaluation of CPU Schedulers by Simulation

33

Silberschatz, Galvin and Gagne 20026.33Operating System Concepts

Solaris 2 Scheduling

34

Silberschatz, Galvin and Gagne 20026.34Operating System Concepts

Windows 2000 Priorities

