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Chapter 7:  Process Synchronization

n Background
n The Critical-Section Problem
n Synchronization Hardware
n Semaphores
n Classical Problems of Synchronization
n Critical Regions
n Monitors
n Synchronization in Solaris 2 & Windows 2000
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Background

n Concurrent access to shared data may result in data 
inconsistency.

n Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes.

n Shared-memory solution to bounded-butter problem 
(Chapter 4) allows at most n – 1 items in buffer at the 
same time.  A solution, where all N buffers are used is not 
simple.
F Suppose that we modify the producer-consumer code by 

adding a variable counter, initialized to 0 and incremented 
each time a new item is added to the buffer
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Bounded-Buffer 

n Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;
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Bounded-Buffer 

n Producer process 

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}
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Bounded-Buffer 

n Consumer process 

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}
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Bounded Buffer

n The statements

counter++;
counter--;

must be performed atomically.

n Atomic operation means an operation that completes in 
its entirety without interruption.
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Bounded Buffer

n The statement “count++” may be implemented in 
machine language as:

register1 = counter
register1 = register1 + 1
counter = register1

n The statement “count--” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2
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Bounded Buffer

n If both the producer and consumer attempt to update the 
buffer concurrently, the assembly language statements 
may get interleaved.

n Interleaving depends upon how the producer and 
consumer processes are scheduled.
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Bounded Buffer

n Assume counter is initially 5. One interleaving of 
statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

n The value of count may be either 4 or 6, where the 
correct result should be 5.
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Race Condition

n Race condition: The situation where several processes 
access – and manipulate shared data concurrently. The 
final value of the shared data depends upon which 
process finishes last.

n To prevent race conditions, concurrent processes must 
be synchronized.
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The Critical-Section Problem

n n processes all competing to use some shared data
n Each process has a code segment, called critical section, 

in which the shared data is accessed.
n Problem – ensure that when one process is executing in 

its critical section, no other process is allowed to execute 
in its critical section.
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Solution to Critical-Section Problem

1. Mutual Exclusion.  If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections.

2. Progress.  If no process is executing in its critical section 
and there exist some processes that wish to enter their 
critical section, then the selection of the processes that 
will enter the critical section next cannot be postponed 
indefinitely.

3. Bounded Waiting.  A bound must exist on the number of 
times that other processes are allowed to enter their 
critical sections after a process has made a request to 
enter its critical section and before that request is 
granted.
� Assume that each process executes at a nonzero speed 
� No assumption concerning relative speed of the n

processes.
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Initial Attempts to Solve Problem

n Only 2  processes, P0 and P1

n General structure of process Pi (other process Pj)
do {

entry section
critical section

exit section
reminder section

} while (1);
n Processes may share some common variables to 

synchronize their actions.
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Algorithm 1

n Shared variables: 
F int turn;

initially turn = 0
F turn - i ⇒ Pi can enter its critical section

n Process Pi

do {
while (turn != i) ;

critical section
turn = j;

reminder section
} while (1);

n Satisfies mutual exclusion, but not progress
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Algorithm 2

n Shared variables
F boolean flag[2];

initially flag [0] = flag [1] = false.
F flag [i] = true ⇒ Pi ready to enter its critical section

n Process Pi

do {
flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

n Satisfies mutual exclusion, but not progress requirement.
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Algorithm 3

n Combined shared variables of algorithms 1 and 2.
n Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

n Meets all three requirements; solves the critical-section problem 
for two processes.

n Exercise: Read and understand the proof.
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Bakery Algorithm

n Before entering its critical section, process receives a 
number. Holder of the smallest number enters the critical 
section.

n If processes Pi and Pj receive the same number, if i < j, 
then Pi is served first; else Pj is served first.

n The numbering scheme always generates numbers in 
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

Critical section for n processes



18

Silberschatz, Galvin and  Gagne 20027.18Operating System Concepts

Bakery Algorithm 

n Notation <≡ lexicographical order (ticket #, process id #)
F (a,b) < (c,d) if a < c or if a = c and b < d
F max (a0,…, an-1) is a number, k, such that k ≥ ai for i - 0, 

…, n – 1

n Shared data
boolean choosing[n];
int number[n];

Data structures are initialized to false and 0 respectively
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Bakery Algorithm 

do { 
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ; 
while ((number[j] != 0) && (number[j],j)< (number[i],i)) ;

}
critical section

number[i] = 0;
remainder section

} while (1);
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Synchronization Hardware

n Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {
boolean rv = target;
target = true;

return rv;
}
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Mutual Exclusion with Test-and-Set

n Shared data: 
boolean lock = false;

n Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
}
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Synchronization Hardware 

n Atomically swap two variables.

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a = b;
b = temp;

}
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Mutual Exclusion with Swap

n Shared data (initialized to false): 
boolean lock;
boolean waiting[n];

n Process Pi

do {
key = true;
while (key == true) 

Swap(lock,key);
critical section

lock = false;
remainder section

}
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Semaphores

n Semaphores were invented by Dijkstra in 1965, and can 
be thought of as a generalized locking mechanism
F A semaphore supports two atomic operations, P / wait and 

V / signal
4 For critical section, the semaphore initialized to 1
4 Before entering the critical section,

a thread calls “P(semaphore)”,
or sometimes “wait(semaphore)”

4 After leaving the critical section,
a thread calls “V(semaphore)”,
or sometimes “signal(semaphore)” 
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Semaphores
n Semaphore “s” is initially 1
n Before entering the critical section, a thread calls “P(s)” or 

“wait(s)”
F wait (s):

4 s = s – 1
4 if (s < 0)

block the thread that called wait(s) on a queue associated 
with semaphore s

4 otherwise
let the thread that called wait(s) continue into the critical 

section
n After leaving the critical section, a thread calls “V(s)” or 

“signal(s)”
F signal (s):

4 s = s + 1
4 if (s ≤ 0), then

wake up one of the threads that called wait(s), and run it so 
that it can continue into the critical section
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Critical Section of n Processes

n Shared data:
semaphore mutex; // initially mutex = 1

n Process Pi: 

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (1);
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Semaphores – Operation & Values

n Semaphores (simplified slightly):
wait (s): signal (s):
s = s – 1 s = s + 1
if (s < 0) if (s ≤ 0)

block the thread wake up & run one of
that called wait(s) the waiting threads

otherwise
continue into CS

n Semaphore values:
F Positive semaphore = number of (additional) threads that 

can be allowed into the critical section
F Negative semaphore = number of threads blocked (note —

there’s also one in CS)
F Binary semaphore has an initial value of 1
F Counting semaphore has an initial value greater than 1
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Semaphore Variants

n Semaphores from last time (simplified):
wait (s): signal (s):
s = s – 1 s = s + 1
if (s < 0) if (s ≤ 0)

block the thread wake up one of
that called wait(s) the waiting threads

otherwise
continue into CS

n "Classical" version of semaphores:
wait (s): signal (s):
if (s ≤ 0) if (a thread is waiting)

block the thread wake up one of
that called wait(s) the waiting threads

s = s – 1 s = s + 1
continue into CS

n Do both work?  What is the difference??
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Semaphore Implementation 1

n Implementing semaphores using busy-waiting:
wait (s): signal (s):
while (s ≤ 0) s = s + 1

do nothing;
s = s – 1

n Evaluation:
8Doesn’t support queue of blocked threads waiting on the 

semaphore
8Waiting threads wastes time busy-waiting (doing nothing 

useful, wasting CPU time)
8The code inside wait(s) and signal(s) is a critical section 

also, and it’s not protected
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Semaphore Implementation 2
n Implementing semaphores (not fully) by disabling interrupts:

wait (s): signal (s):
disable interrupts disable interrupts
while (s ≤ 0) s = s + 1

do nothing;
s = s – 1
enable interrupts enable interrupts

n Evaluation:
8Doesn’t support queue of blocked threads waiting on the 

semaphore
8Waiting threads wastes time busy-waiting (doing nothing useful, 

wasting CPU time)
8Doesn’t work on multiprocessors
8Can interfere with timer, which might be needed by other 

applications
8OK for OS to do this, but users aren’t allowed to disable 

interrupts!  (Why not?)
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Semaphore Implementation 3
n Implementing semaphores (not fully) using a test&set instruction:

wait (s): signal (s):
while (test&set(lk)!=0) while (test&set(lk)!=0)

do nothing; do nothing;
while (s ≤ 0) s = s + 1

do nothing;
s = s – 1
lk = 0 lk = 0

n Operation:
F Lock “lk” has an initial value of 0
F If “lk” is free (lk=0), test&set atomically:

4 reads 0, sets value to 1, and returns 0
4 loop test fails, meaning lock is now busy

F If “lk” is busy (lk=1), test&set atomically:
4 reads 1, sets value to 1, and returns 1
4 loop test is true, so loop continues until someone releases the lock
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Semaphore Implementation 

n Define a semaphore as a record
typedef struct {

int value;
struct process *L;

} semaphore;

n Assume two simple operations:
F block suspends the process that invokes it.
F wakeup(P) resumes the execution of a blocked process P.
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Implementation

n Semaphore operations now defined as 
void wait(semaphore S):

S.value--;
if (S.value < 0) { 

add this process to S.L;
block;

}

void signal(semaphore S): 
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}
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Semaphore as a General Synchronization Tool

n Execute B in Pj only after A executed in Pi

n Use semaphore flag initialized to 0
n Code:

Pi Pj

M M
A wait(flag)

signal(flag) B
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Deadlock and Starvation

n Deadlock – two or more processes are waiting indefinitely for 
an event that can be caused by only one of the waiting 
processes.

n Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

M M
signal(S); signal(Q);
signal(Q) signal(S);

n Starvation – indefinite blocking.  A process may never be 
removed from the semaphore queue in which it is suspended.
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Two Types of Semaphores

n Counting semaphore – integer value can range over 
an unrestricted domain.

n Binary semaphore – integer value can range only 
between 0 and 1; can be simpler to implement.

n Can implement a counting semaphore S as a binary 
semaphore.
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Implementing S as a Binary Semaphore

n Data structures:
binary-semaphore S1, S2;
int C:  

n Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S
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Implementing S
n wait operation

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

n signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);
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Classical Problems of Synchronization

n Bounded-Buffer Problem

n Readers and Writers Problem

n Dining-Philosophers Problem
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Bounded-Buffer Problem

n Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1
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Bounded-Buffer Problem Producer Process

do { 
…

produce an item in nextp
…

wait(empty);
wait(mutex);

…
add nextp to buffer

…
signal(mutex);
signal(full);

} while (1);
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Bounded-Buffer Problem Consumer Process

do { 
wait(full)
wait(mutex);

…
remove an item from buffer to nextc

…
signal(mutex);
signal(empty);

…
consume the item in nextc

…
} while (1);
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First Readers-Writers Problem

n No reader is kept waiting unless a writer has already 
received permission to write

n Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0



44

Silberschatz, Galvin and  Gagne 20027.44Operating System Concepts

Readers-Writers Problem Reader Process

wait(mutex);
readcount++;
if (readcount == 1)

wait(rt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):
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Readers-Writers Problem Writer Process

wait(wrt);
…

writing is performed
…

signal(wrt);

n Q: Could there be starvation?
n Other variations on problem:

F 2nd Reader-Writer problem: any ready writer performs write 
as soon as possible i.e. no new readers are admitted.
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Dining-Philosophers Problem

n Shared data 
semaphore chopstick[5];

Initially all values are 1
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Dining-Philosophers Problem 

n Philosopher i:
do {

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);
n Possibility of deadlock
n Exercise: Read about possible solutions and work out how to do 

them.
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Semaphores in Nachos
n The class Semaphore is defined in threads/synch.h and 

synch.cc
F The classes Lock and Condition are also defined , but their 

member functions are empty (implementation left as 
exercise)

n Interesting functions:
F Semaphores:

4 Semaphore::Semaphore( ) — creates a semaphore with 
specified name & value

4 Semaphore::P( ) — semaphore wait
4 Semaphore::V( ) — semaphore signal

F Locks:
4 Lock::Acquire( )
4 Lock::Release( )

F Condition variables:
4 Condition::Wait( )
4 Condition::Signal( )
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Semaphores in Nachos – P()
void
Semaphore::P()
{

IntStatus oldLevel = interrupt->
SetLevel(IntOff); // disable interrupts

while (value == 0) { // sema not avail
queue-> 

// so go to sleep
Append((void *)currentThread);

currentThread->Sleep();
} 

value--; // 
semaphore available, 

// consume its value

(void) interrupt-> // re-enable interrupts
SetLevel(oldLevel);

}
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Semaphores in Nachos – V()

void
Semaphore::V()
{

Thread *thread;

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

thread = (Thread *)queue->Remove();
if (thread != NULL) // make thread ready,

// consuming 
the V immediately

scheduler->ReadyToRun(thread);

value++;

(void) interrupt->SetLevel(oldLevel);
}
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Critical Regions

n High-level synchronization construct
n A shared variable v of type T, is declared as:

v: shared T
n Variable v accessed only inside statement

region v when B do S

where B is a boolean expression.

n While statement S is being executed, no other process 
can access variable v. 
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Critical Regions

n Regions referring to the same shared variable exclude 
each other in time.

n When a process tries to execute the region statement, the 
Boolean expression B is evaluated.  If B is true, statement 
S is executed.  If it is false, the process is delayed until B
becomes true and no other process is in the region 
associated with v.
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Example – Bounded Buffer

n Shared data:

struct buffer {
int pool[n];
int count, in, out;

}
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Bounded Buffer Producer Process

n Producer process inserts nextp into the shared buffer

region buffer when( count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}
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Bounded Buffer Consumer Process

n Consumer process removes an item from the shared 
buffer and puts it in nextc

region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}
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Implementation region x when B do S

n Associate with the shared variable x, the following 
variables:

semaphore mutex, first-delay, second-delay;
int first-count, second-count;

n Mutually exclusive access to the critical section is 
provided by mutex.

n If a process cannot enter the critical section because the 
Boolean expression B is false, it initially waits on the first-
delay semaphore; moved to the second-delay 
semaphore before it is allowed to reevaluate B.



57

Silberschatz, Galvin and  Gagne 20027.57Operating System Concepts

Implementation

n Keep track of the number of processes waiting on first-
delay and second-delay, with first-count and second-
count respectively.

n The algorithm assumes a FIFO ordering in the queuing of 
processes for a semaphore.

n For an arbitrary queuing discipline, a more complicated 
implementation is required.
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Monitors

n High-level synchronization construct that allows the safe sharing 
of an abstract data type among concurrent processes.

monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body P2 (…) {

. . .
} 
procedure body Pn (…) {

. . .
} 
{

initialization code
}

}
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Monitors

n To allow a process to wait within the monitor, a 
condition variable must be declared, as

condition x, y;
n Condition variable can only be used with the 

operations wait and signal.
F The operation

x.wait();
means that the process invoking this operation is 
suspended until another process invokes

x.signal();
F The x.signal operation resumes exactly one suspended 

process.  If no process is suspended, then the signal
operation has no effect.
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Schematic View of a Monitor
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Monitor With Condition Variables
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Dining Philosophers Example
monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) // following slides
void putdown(int i) // following slides
void test(int i) // following slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}
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Dining Philosophers
void pickup(int i) {

state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}
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Dining Philosophers
void test(int i) {

if ( (state[(I + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}
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Monitor Implementation Using Semaphores

n Variables 
semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next-count = 0;

n Each external procedure F will be replaced by
wait(mutex);

…
body of F;

…
if (next-count > 0)

signal(next)
else 

signal(mutex);

n Mutual exclusion within a monitor is ensured.
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Monitor Implementation

n For each condition variable x, we  have:
semaphore x-sem; // (initially  = 0)
int x-count = 0;

n The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;
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Monitor Implementation

n The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}
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Monitor Implementation

n Conditional-wait construct: x.wait(c);
F c – integer expression evaluated when the wait operation is 

executed.
F value of c (a priority number) stored with the name of the 

process that is suspended.
F when x.signal is executed, process with smallest 

associated priority number is resumed next.
n Check two conditions to establish correctness of system: 

F User processes must always make their calls on the monitor 
in a correct sequence.

F Must ensure that an uncooperative process does not ignore 
the mutual-exclusion gateway provided by the monitor, and 
try to access the shared resource directly, without using the 
access protocols.
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Solaris 2 Synchronization

n Implements a variety of locks to support multitasking, 
multithreading (including real-time threads), and 
multiprocessing.

n Uses adaptive mutexes for efficiency when protecting 
data from short code segments.

n Uses condition variables and readers-writers locks when 
longer sections of code need access to data. 

n Uses turnstiles to order the list of threads waiting to 
acquire either an adaptive mutex or reader-writer lock.
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Windows 2000 Synchronization

n Uses interrupt masks to protect access to global 
resources on uniprocessor systems.

n Uses spinlocks on multiprocessor systems.

n Also provides dispatcher objects which may act as wither 
mutexes and semaphores.

n Dispatcher objects may also provide events. An event 
acts much like a condition variable.


