
1

Silberschatz, Galvin and Gagne 20027.1Operating System Concepts

Chapter 7: Process Synchronization

n Background
n The Critical-Section Problem
n Synchronization Hardware
n Semaphores
n Classical Problems of Synchronization
n Critical Regions
n Monitors
n Synchronization in Solaris 2 & Windows 2000

2

Silberschatz, Galvin and Gagne 20027.2Operating System Concepts

Background

n Concurrent access to shared data may result in data
inconsistency.

n Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

n Shared-memory solution to bounded-butter problem
(Chapter 4) allows at most n – 1 items in buffer at the
same time. A solution, where all N buffers are used is not
simple.
F Suppose that we modify the producer-consumer code by

adding a variable counter, initialized to 0 and incremented
each time a new item is added to the buffer

3

Silberschatz, Galvin and Gagne 20027.3Operating System Concepts

Bounded-Buffer

n Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

4

Silberschatz, Galvin and Gagne 20027.4Operating System Concepts

Bounded-Buffer

n Producer process

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

5

Silberschatz, Galvin and Gagne 20027.5Operating System Concepts

Bounded-Buffer

n Consumer process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

6

Silberschatz, Galvin and Gagne 20027.6Operating System Concepts

Bounded Buffer

n The statements

counter++;
counter--;

must be performed atomically.

n Atomic operation means an operation that completes in
its entirety without interruption.

7

Silberschatz, Galvin and Gagne 20027.7Operating System Concepts

Bounded Buffer

n The statement “count++” may be implemented in
machine language as:

register1 = counter
register1 = register1 + 1
counter = register1

n The statement “count--” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

8

Silberschatz, Galvin and Gagne 20027.8Operating System Concepts

Bounded Buffer

n If both the producer and consumer attempt to update the
buffer concurrently, the assembly language statements
may get interleaved.

n Interleaving depends upon how the producer and
consumer processes are scheduled.

9

Silberschatz, Galvin and Gagne 20027.9Operating System Concepts

Bounded Buffer

n Assume counter is initially 5. One interleaving of
statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

n The value of count may be either 4 or 6, where the
correct result should be 5.

10

Silberschatz, Galvin and Gagne 20027.10Operating System Concepts

Race Condition

n Race condition: The situation where several processes
access – and manipulate shared data concurrently. The
final value of the shared data depends upon which
process finishes last.

n To prevent race conditions, concurrent processes must
be synchronized.

11

Silberschatz, Galvin and Gagne 20027.11Operating System Concepts

The Critical-Section Problem

n n processes all competing to use some shared data
n Each process has a code segment, called critical section,

in which the shared data is accessed.
n Problem – ensure that when one process is executing in

its critical section, no other process is allowed to execute
in its critical section.

12

Silberschatz, Galvin and Gagne 20027.12Operating System Concepts

Solution to Critical-Section Problem

1. Mutual Exclusion. If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that
will enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting. A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is
granted.
� Assume that each process executes at a nonzero speed
� No assumption concerning relative speed of the n

processes.

13

Silberschatz, Galvin and Gagne 20027.13Operating System Concepts

Initial Attempts to Solve Problem

n Only 2 processes, P0 and P1

n General structure of process Pi (other process Pj)
do {

entry section
critical section

exit section
reminder section

} while (1);
n Processes may share some common variables to

synchronize their actions.

14

Silberschatz, Galvin and Gagne 20027.14Operating System Concepts

Algorithm 1

n Shared variables:
F int turn;

initially turn = 0
F turn - i ⇒ Pi can enter its critical section

n Process Pi

do {
while (turn != i) ;

critical section
turn = j;

reminder section
} while (1);

n Satisfies mutual exclusion, but not progress

15

Silberschatz, Galvin and Gagne 20027.15Operating System Concepts

Algorithm 2

n Shared variables
F boolean flag[2];

initially flag [0] = flag [1] = false.
F flag [i] = true ⇒ Pi ready to enter its critical section

n Process Pi

do {
flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

n Satisfies mutual exclusion, but not progress requirement.

16

Silberschatz, Galvin and Gagne 20027.16Operating System Concepts

Algorithm 3

n Combined shared variables of algorithms 1 and 2.
n Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

n Meets all three requirements; solves the critical-section problem
for two processes.

n Exercise: Read and understand the proof.

17

Silberschatz, Galvin and Gagne 20027.17Operating System Concepts

Bakery Algorithm

n Before entering its critical section, process receives a
number. Holder of the smallest number enters the critical
section.

n If processes Pi and Pj receive the same number, if i < j,
then Pi is served first; else Pj is served first.

n The numbering scheme always generates numbers in
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

Critical section for n processes

18

Silberschatz, Galvin and Gagne 20027.18Operating System Concepts

Bakery Algorithm

n Notation <≡ lexicographical order (ticket #, process id #)
F (a,b) < (c,d) if a < c or if a = c and b < d
F max (a0,…, an-1) is a number, k, such that k ≥ ai for i - 0,

…, n – 1

n Shared data
boolean choosing[n];
int number[n];

Data structures are initialized to false and 0 respectively

19

Silberschatz, Galvin and Gagne 20027.19Operating System Concepts

Bakery Algorithm

do {
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ;
while ((number[j] != 0) && (number[j],j)< (number[i],i)) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

20

Silberschatz, Galvin and Gagne 20027.20Operating System Concepts

Synchronization Hardware

n Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {
boolean rv = target;
target = true;

return rv;
}

21

Silberschatz, Galvin and Gagne 20027.21Operating System Concepts

Mutual Exclusion with Test-and-Set

n Shared data:
boolean lock = false;

n Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
}

22

Silberschatz, Galvin and Gagne 20027.22Operating System Concepts

Synchronization Hardware

n Atomically swap two variables.

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a = b;
b = temp;

}

23

Silberschatz, Galvin and Gagne 20027.23Operating System Concepts

Mutual Exclusion with Swap

n Shared data (initialized to false):
boolean lock;
boolean waiting[n];

n Process Pi

do {
key = true;
while (key == true)

Swap(lock,key);
critical section

lock = false;
remainder section

}

24

Silberschatz, Galvin and Gagne 20027.24Operating System Concepts

Semaphores

n Semaphores were invented by Dijkstra in 1965, and can
be thought of as a generalized locking mechanism
F A semaphore supports two atomic operations, P / wait and

V / signal
4 For critical section, the semaphore initialized to 1
4 Before entering the critical section,

a thread calls “P(semaphore)”,
or sometimes “wait(semaphore)”

4 After leaving the critical section,
a thread calls “V(semaphore)”,
or sometimes “signal(semaphore)”

25

Silberschatz, Galvin and Gagne 20027.25Operating System Concepts

Semaphores
n Semaphore “s” is initially 1
n Before entering the critical section, a thread calls “P(s)” or

“wait(s)”
F wait (s):

4 s = s – 1
4 if (s < 0)

block the thread that called wait(s) on a queue associated
with semaphore s

4 otherwise
let the thread that called wait(s) continue into the critical

section
n After leaving the critical section, a thread calls “V(s)” or

“signal(s)”
F signal (s):

4 s = s + 1
4 if (s ≤ 0), then

wake up one of the threads that called wait(s), and run it so
that it can continue into the critical section

26

Silberschatz, Galvin and Gagne 20027.26Operating System Concepts

Critical Section of n Processes

n Shared data:
semaphore mutex; // initially mutex = 1

n Process Pi:

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (1);

27

Silberschatz, Galvin and Gagne 20027.27Operating System Concepts

Semaphores – Operation & Values

n Semaphores (simplified slightly):
wait (s): signal (s):
s = s – 1 s = s + 1
if (s < 0) if (s ≤ 0)

block the thread wake up & run one of
that called wait(s) the waiting threads

otherwise
continue into CS

n Semaphore values:
F Positive semaphore = number of (additional) threads that

can be allowed into the critical section
F Negative semaphore = number of threads blocked (note —

there’s also one in CS)
F Binary semaphore has an initial value of 1
F Counting semaphore has an initial value greater than 1

28

Silberschatz, Galvin and Gagne 20027.28Operating System Concepts

Semaphore Variants

n Semaphores from last time (simplified):
wait (s): signal (s):
s = s – 1 s = s + 1
if (s < 0) if (s ≤ 0)

block the thread wake up one of
that called wait(s) the waiting threads

otherwise
continue into CS

n "Classical" version of semaphores:
wait (s): signal (s):
if (s ≤ 0) if (a thread is waiting)

block the thread wake up one of
that called wait(s) the waiting threads

s = s – 1 s = s + 1
continue into CS

n Do both work? What is the difference??

29

Silberschatz, Galvin and Gagne 20027.29Operating System Concepts

Semaphore Implementation 1

n Implementing semaphores using busy-waiting:
wait (s): signal (s):
while (s ≤ 0) s = s + 1

do nothing;
s = s – 1

n Evaluation:
8Doesn’t support queue of blocked threads waiting on the

semaphore
8Waiting threads wastes time busy-waiting (doing nothing

useful, wasting CPU time)
8The code inside wait(s) and signal(s) is a critical section

also, and it’s not protected

30

Silberschatz, Galvin and Gagne 20027.30Operating System Concepts

Semaphore Implementation 2
n Implementing semaphores (not fully) by disabling interrupts:

wait (s): signal (s):
disable interrupts disable interrupts
while (s ≤ 0) s = s + 1

do nothing;
s = s – 1
enable interrupts enable interrupts

n Evaluation:
8Doesn’t support queue of blocked threads waiting on the

semaphore
8Waiting threads wastes time busy-waiting (doing nothing useful,

wasting CPU time)
8Doesn’t work on multiprocessors
8Can interfere with timer, which might be needed by other

applications
8OK for OS to do this, but users aren’t allowed to disable

interrupts! (Why not?)

31

Silberschatz, Galvin and Gagne 20027.31Operating System Concepts

Semaphore Implementation 3
n Implementing semaphores (not fully) using a test&set instruction:

wait (s): signal (s):
while (test&set(lk)!=0) while (test&set(lk)!=0)

do nothing; do nothing;
while (s ≤ 0) s = s + 1

do nothing;
s = s – 1
lk = 0 lk = 0

n Operation:
F Lock “lk” has an initial value of 0
F If “lk” is free (lk=0), test&set atomically:

4 reads 0, sets value to 1, and returns 0
4 loop test fails, meaning lock is now busy

F If “lk” is busy (lk=1), test&set atomically:
4 reads 1, sets value to 1, and returns 1
4 loop test is true, so loop continues until someone releases the lock

32

Silberschatz, Galvin and Gagne 20027.32Operating System Concepts

Semaphore Implementation

n Define a semaphore as a record
typedef struct {

int value;
struct process *L;

} semaphore;

n Assume two simple operations:
F block suspends the process that invokes it.
F wakeup(P) resumes the execution of a blocked process P.

33

Silberschatz, Galvin and Gagne 20027.33Operating System Concepts

Implementation

n Semaphore operations now defined as
void wait(semaphore S):

S.value--;
if (S.value < 0) {

add this process to S.L;
block;

}

void signal(semaphore S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

34

Silberschatz, Galvin and Gagne 20027.34Operating System Concepts

Semaphore as a General Synchronization Tool

n Execute B in Pj only after A executed in Pi

n Use semaphore flag initialized to 0
n Code:

Pi Pj

M M
A wait(flag)

signal(flag) B

35

Silberschatz, Galvin and Gagne 20027.35Operating System Concepts

Deadlock and Starvation

n Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes.

n Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

M M
signal(S); signal(Q);
signal(Q) signal(S);

n Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

36

Silberschatz, Galvin and Gagne 20027.36Operating System Concepts

Two Types of Semaphores

n Counting semaphore – integer value can range over
an unrestricted domain.

n Binary semaphore – integer value can range only
between 0 and 1; can be simpler to implement.

n Can implement a counting semaphore S as a binary
semaphore.

37

Silberschatz, Galvin and Gagne 20027.37Operating System Concepts

Implementing S as a Binary Semaphore

n Data structures:
binary-semaphore S1, S2;
int C:

n Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S

38

Silberschatz, Galvin and Gagne 20027.38Operating System Concepts

Implementing S
n wait operation

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

n signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

39

Silberschatz, Galvin and Gagne 20027.39Operating System Concepts

Classical Problems of Synchronization

n Bounded-Buffer Problem

n Readers and Writers Problem

n Dining-Philosophers Problem

40

Silberschatz, Galvin and Gagne 20027.40Operating System Concepts

Bounded-Buffer Problem

n Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

41

Silberschatz, Galvin and Gagne 20027.41Operating System Concepts

Bounded-Buffer Problem Producer Process

do {
…

produce an item in nextp
…

wait(empty);
wait(mutex);

…
add nextp to buffer

…
signal(mutex);
signal(full);

} while (1);

42

Silberschatz, Galvin and Gagne 20027.42Operating System Concepts

Bounded-Buffer Problem Consumer Process

do {
wait(full)
wait(mutex);

…
remove an item from buffer to nextc

…
signal(mutex);
signal(empty);

…
consume the item in nextc

…
} while (1);

43

Silberschatz, Galvin and Gagne 20027.43Operating System Concepts

First Readers-Writers Problem

n No reader is kept waiting unless a writer has already
received permission to write

n Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0

44

Silberschatz, Galvin and Gagne 20027.44Operating System Concepts

Readers-Writers Problem Reader Process

wait(mutex);
readcount++;
if (readcount == 1)

wait(rt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):

45

Silberschatz, Galvin and Gagne 20027.45Operating System Concepts

Readers-Writers Problem Writer Process

wait(wrt);
…

writing is performed
…

signal(wrt);

n Q: Could there be starvation?
n Other variations on problem:

F 2nd Reader-Writer problem: any ready writer performs write
as soon as possible i.e. no new readers are admitted.

46

Silberschatz, Galvin and Gagne 20027.46Operating System Concepts

Dining-Philosophers Problem

n Shared data
semaphore chopstick[5];

Initially all values are 1

47

Silberschatz, Galvin and Gagne 20027.47Operating System Concepts

Dining-Philosophers Problem

n Philosopher i:
do {

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);
n Possibility of deadlock
n Exercise: Read about possible solutions and work out how to do

them.

48

Silberschatz, Galvin and Gagne 20027.48Operating System Concepts

Semaphores in Nachos
n The class Semaphore is defined in threads/synch.h and

synch.cc
F The classes Lock and Condition are also defined , but their

member functions are empty (implementation left as
exercise)

n Interesting functions:
F Semaphores:

4 Semaphore::Semaphore() — creates a semaphore with
specified name & value

4 Semaphore::P() — semaphore wait
4 Semaphore::V() — semaphore signal

F Locks:
4 Lock::Acquire()
4 Lock::Release()

F Condition variables:
4 Condition::Wait()
4 Condition::Signal()

49

Silberschatz, Galvin and Gagne 20027.49Operating System Concepts

Semaphores in Nachos – P()
void
Semaphore::P()
{

IntStatus oldLevel = interrupt->
SetLevel(IntOff); // disable interrupts

while (value == 0) { // sema not avail
queue->

// so go to sleep
Append((void *)currentThread);

currentThread->Sleep();
}

value--; //
semaphore available,

// consume its value

(void) interrupt-> // re-enable interrupts
SetLevel(oldLevel);

}

50

Silberschatz, Galvin and Gagne 20027.50Operating System Concepts

Semaphores in Nachos – V()

void
Semaphore::V()
{

Thread *thread;

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

thread = (Thread *)queue->Remove();
if (thread != NULL) // make thread ready,

// consuming
the V immediately

scheduler->ReadyToRun(thread);

value++;

(void) interrupt->SetLevel(oldLevel);
}

51

Silberschatz, Galvin and Gagne 20027.51Operating System Concepts

Critical Regions

n High-level synchronization construct
n A shared variable v of type T, is declared as:

v: shared T
n Variable v accessed only inside statement

region v when B do S

where B is a boolean expression.

n While statement S is being executed, no other process
can access variable v.

52

Silberschatz, Galvin and Gagne 20027.52Operating System Concepts

Critical Regions

n Regions referring to the same shared variable exclude
each other in time.

n When a process tries to execute the region statement, the
Boolean expression B is evaluated. If B is true, statement
S is executed. If it is false, the process is delayed until B
becomes true and no other process is in the region
associated with v.

53

Silberschatz, Galvin and Gagne 20027.53Operating System Concepts

Example – Bounded Buffer

n Shared data:

struct buffer {
int pool[n];
int count, in, out;

}

54

Silberschatz, Galvin and Gagne 20027.54Operating System Concepts

Bounded Buffer Producer Process

n Producer process inserts nextp into the shared buffer

region buffer when(count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}

55

Silberschatz, Galvin and Gagne 20027.55Operating System Concepts

Bounded Buffer Consumer Process

n Consumer process removes an item from the shared
buffer and puts it in nextc

region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}

56

Silberschatz, Galvin and Gagne 20027.56Operating System Concepts

Implementation region x when B do S

n Associate with the shared variable x, the following
variables:

semaphore mutex, first-delay, second-delay;
int first-count, second-count;

n Mutually exclusive access to the critical section is
provided by mutex.

n If a process cannot enter the critical section because the
Boolean expression B is false, it initially waits on the first-
delay semaphore; moved to the second-delay
semaphore before it is allowed to reevaluate B.

57

Silberschatz, Galvin and Gagne 20027.57Operating System Concepts

Implementation

n Keep track of the number of processes waiting on first-
delay and second-delay, with first-count and second-
count respectively.

n The algorithm assumes a FIFO ordering in the queuing of
processes for a semaphore.

n For an arbitrary queuing discipline, a more complicated
implementation is required.

58

Silberschatz, Galvin and Gagne 20027.58Operating System Concepts

Monitors

n High-level synchronization construct that allows the safe sharing
of an abstract data type among concurrent processes.

monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body P2 (…) {

. . .
}
procedure body Pn (…) {

. . .
}
{

initialization code
}

}

59

Silberschatz, Galvin and Gagne 20027.59Operating System Concepts

Monitors

n To allow a process to wait within the monitor, a
condition variable must be declared, as

condition x, y;
n Condition variable can only be used with the

operations wait and signal.
F The operation

x.wait();
means that the process invoking this operation is
suspended until another process invokes

x.signal();
F The x.signal operation resumes exactly one suspended

process. If no process is suspended, then the signal
operation has no effect.

60

Silberschatz, Galvin and Gagne 20027.60Operating System Concepts

Schematic View of a Monitor

61

Silberschatz, Galvin and Gagne 20027.61Operating System Concepts

Monitor With Condition Variables

62

Silberschatz, Galvin and Gagne 20027.62Operating System Concepts

Dining Philosophers Example
monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) // following slides
void putdown(int i) // following slides
void test(int i) // following slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

63

Silberschatz, Galvin and Gagne 20027.63Operating System Concepts

Dining Philosophers
void pickup(int i) {

state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

64

Silberschatz, Galvin and Gagne 20027.64Operating System Concepts

Dining Philosophers
void test(int i) {

if ((state[(I + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

65

Silberschatz, Galvin and Gagne 20027.65Operating System Concepts

Monitor Implementation Using Semaphores

n Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

n Each external procedure F will be replaced by
wait(mutex);

…
body of F;

…
if (next-count > 0)

signal(next)
else

signal(mutex);

n Mutual exclusion within a monitor is ensured.

66

Silberschatz, Galvin and Gagne 20027.66Operating System Concepts

Monitor Implementation

n For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

n The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

67

Silberschatz, Galvin and Gagne 20027.67Operating System Concepts

Monitor Implementation

n The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}

68

Silberschatz, Galvin and Gagne 20027.68Operating System Concepts

Monitor Implementation

n Conditional-wait construct: x.wait(c);
F c – integer expression evaluated when the wait operation is

executed.
F value of c (a priority number) stored with the name of the

process that is suspended.
F when x.signal is executed, process with smallest

associated priority number is resumed next.
n Check two conditions to establish correctness of system:

F User processes must always make their calls on the monitor
in a correct sequence.

F Must ensure that an uncooperative process does not ignore
the mutual-exclusion gateway provided by the monitor, and
try to access the shared resource directly, without using the
access protocols.

69

Silberschatz, Galvin and Gagne 20027.69Operating System Concepts

Solaris 2 Synchronization

n Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

n Uses adaptive mutexes for efficiency when protecting
data from short code segments.

n Uses condition variables and readers-writers locks when
longer sections of code need access to data.

n Uses turnstiles to order the list of threads waiting to
acquire either an adaptive mutex or reader-writer lock.

70

Silberschatz, Galvin and Gagne 20027.70Operating System Concepts

Windows 2000 Synchronization

n Uses interrupt masks to protect access to global
resources on uniprocessor systems.

n Uses spinlocks on multiprocessor systems.

n Also provides dispatcher objects which may act as wither
mutexes and semaphores.

n Dispatcher objects may also provide events. An event
acts much like a condition variable.

