

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

B Mutual exclusion: only one process at a time can use a
resource.

® Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes.

B No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task.

m Circular wait: there exists a set {Py, P, ..., Py} of waiting
processes such that P is waiting for a resource that is
held by P4, P, is waiting for a resource that is held by
P,, ..., P,_; is waiting for a resource that is held by
P,, and P, is waiting for a resource that is held by P,,.

-
b
[

i
) :) é‘-% e
Operating System Concepts 8.5 Silberschatz, Galvin and Gagne O 2002 Bt

Resource-Allocation Graph

A set of vertices V and a set of edges E.

B V is partitioned into two types:

P ={P,, P, ..., P}, the set consisting of all the processes in
the system.

R ={R, R,, ..., R}, the set consisting of all resource types
in the system.

m request edge — directed edge P;® R,
m assignment edge — directed edge R; ® P;

e
A
ll-
w)
. . , P
Operating System Concepts 8.6 Silberschatz, Galvin and Gagne O 2002 0 1

Resource Allocation Graph With A Deadlock

Operating System Concepts

2 (A

8.9

Silberschatz, Galvin and Gagne O 2002

-
b
[

P

&esource Allocation Graph With A Cycle But No Deadlock

Operating System Concepts

A,

o1

o~

A

B~

8.10

Silberschatz, Galvin and Gagne O 2002

P

Deadlock Prevention

Restrain the ways request can be made.

B Mutual Exclusion — not required for sharable resources;
must hold for nonsharable resources.

B Hold and Wait — must guarantee that whenever a
process requests a resource, it does not hold any other
resources.

Require process to request and be allocated all its
resources before it begins execution, or allow process to
request resources only when the process has none.

Low resource utilization; starvation possible.

-
b
[

i
) :) é‘-% e
Operating System Concepts 8.13 Silberschatz, Galvin and Gagne O 2002 Bt

Deadlock Prevention (Cont.)

® No Preemption —

If a process that is holding some resources requests
another resource that cannot be immediately allocated to i,
then all resources currently being held are released.

Preempted resources are added to the list of resources for
which the process is waiting.

Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

m Circular Wait — impose a total ordering of all resource

types, and require that each process requests resources
in an increasing order of enumeration.

e
A
ll-
w)
. . , P
Operating System Concepts 8.14 Silberschatz, Galvin and Gagne O 2002 0 1

Deadlock Avoidance

Requires that the system has some additional a priori information
available.

m Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

B The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition.

m Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

e

b
[

i
) :) é‘-% e
Operating System Concepts 8.15 Silberschatz, Galvin and Gagne O 2002 Bt

Safe State

® \When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

m System is in safe state if there exists a safe sequence of all
processes.

m Sequence <Py, P,, ..., P> is safe if for each P;, the resources
that Pi can still request can be satisfied by currently available
resources + resources held by all the P;, with j<I.

If P; resource needs are not immediately available, then P; can wait
until all P; have finished.

When P, |s finished, P; can obtain needed resources, execute,
return ailocated resources and terminate.

When P; terminates, P;,, can obtain its needed resources, and so
on.

e
A
ll-
w)
. . , P
Operating System Concepts 8.16 Silberschatz, Galvin and Gagne O 2002 0 1

deadlock

unsafe

Resource-Allocation Graph Algorithm

m Claim edge P; ® R;indicated that process P; may request
resource R;; represented by a dashed line.

m Claim edge converts to request edge when a process
requests a resource.

B When a resource is released by a process, assignment
edge reconverts to a claim edge.

B Resources must be claimed a priori in the system.

i
) :) é‘-% e
Operating System Concepts 8.19 Silberschatz, Galvin and Gagne O 2002 Bt

Resource-Allocation Graph For Deadlock Avoidance

A

2 -
ll-
w)
. . , P
Operating System Concepts 8.20 Silberschatz, Galvin and Gagne O 2002 0 1

10

11

. Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

m Available: Vector of length m. If available [j] = k, there are
k instances of resource type R;available.

B Max: n x m matrix. If Max [i,j] =k, then process P; may
request at mostk instances of resource type R;.

B Allocation: n x m matrix. If Allocation[i,j] =k then P; is
currently allocated k instances of R;,

B Need: n x m matrix. If Need[i,j] =k, then P; may need k
more instances of R;to complete its task.

Need [i,j] = Max]i,j] — Allocation [i,j].

-
b
[

i
) :) é‘-% e
Operating System Concepts 8.23 Silberschatz, Galvin and Gagne O 2002 Bt

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false fori- 1,3, ..., n.
2. Find and i such that both:
(a) Finish [i] = false
(b) Need £ Work
If no suchii exists, go to step 4.
3. Work = Work + Allocation;
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe
state.

e
A
ll-
w)
. . , P
Operating System Concepts 8.24 Silberschatz, Galvin and Gagne O 2002 0 1

12

Resource-Request Algorithm for Process P,

Request = request vector for process P;. If Request; [j] =k
then process P; wants k instances of resource type R;

1. If Request; £ Need; go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Request; £ Available, go to step 3. Otherwise P; must
wait, since resources are not available.
3. Pretend to allocate requested resources to P; by modifying
the state as follows:
Available = Available - Request;
Allocation; = Allocation; + Request;;
Need; = Need; — Request;.
° If safe b the resources are allocated to P;.
° If unsafe P P;must wait, and the old resource-allocation
state is restored

0
| | AL
8.25 Silberschatz, Galvin and Gagne O 2002 ot

Operating System Concepts

Example of Banker’s Algorithm

B 5 processes Pythrough P,; 3 resource types A
(10 instances),
B (5 instances), and C (7 instances).

B Spapshot at time T:
Allocation Max Available
ABC ABC ABC
P, 010 753 332
P, 200 322
P, 302 902
P; 211 222
P, 002 433

e
A
ll-
w)
. , P
8.26 Silberschatz, Galvin and Gagne O 2002 0 b

Operating System Concepts

13

14

15

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

i
' ') &‘-% -
Operating System Concepts 8.31 Silberschatz, Galvin and Gagne O 2002 Bt

Several Instances of a Resource Type

m Available: A vector of length m indicates the number of
available resources of each type.

m Allocation: An nx m matrix defines the number of
resources of each type currently allocated to each
process.

B Request: An nx m matrix indicates the current request
of each process. If Request [i] =k, then process P; is
requesting k more instances of resource type. R;.

e
A
ll-
o
. . , P
Operating System Concepts 8.32 Silberschatz, Galvin and Gagne O 2002 0 1

16

17

18

19

20

21

