What is an Operating System? (Review)

- An operating system (OS) is the interface between the user and the hardware
 - It implements a virtual machine that is easier to program than bare hardware
- An OS provides standard services (an interface) which are implemented on the hardware, including:
 - Processes, CPU scheduling, memory management, file system, networking
- The OS coordinates multiple applications and users (multiple processes) in a fair and efficient manner

➤ The goal in OS development is to make the machine convenient to use (a software engineering problem) and efficient (a system and engineering problem)

History of Operating Systems

- Phase 0 — hardware is a very expensive experiment; no operating systems exist
 1. One user at console
 - One function at a time (computation, I/O, user think/response)
 - Program loaded via card deck
 - Libraries of device drivers (for I/O)
 - User debugs at console

- Phase 1 — hardware is expensive, humans are cheap
 2. Simple batch processing: load program, run, print results, dump, repeat
 - User gives program (cards or tape) to the operator, who schedules the jobs
 - Resident monitor automatically loads, runs, dumps user jobs
 - Requires memory management (relocation) and protection
 - More efficient use of hardware, but debugging is more difficult (from dumps)

History of Operating Systems (cont.)

- Phase 1 — hardware is expensive, humans are cheap
 3. Overlapped CPU & I/O operations
 - First: buffer slow I/O onto fast tape drives connected to CPU, replicate I/O devices
 - Later: spool data to disk
 4. Multiprogrammed batch systems
 - Multiple jobs are on the disk, waiting to run
 - Multiprogramming — run several programs at the “same” time
 - Pick some jobs to run (scheduling), and put them in memory (memory management)
 - Run one job; when it waits on something (tape to be mounted, key to be pressed), switch to another job in memory
 - First big failures:
 - MULTICS announced in 1963, not released until 1969
 - IBM's OS/360 released with 1000 known bugs
 - OS design should be a science, not an art

- Phase 2 — hardware is less expensive than before, humans are expensive
 5. Interactive timesharing
 - Lots of cheap terminals, one computer
 - All users interact with system at once
 - Debugging is much easier
 - Disks are cheap, so put programs and data online
 - 1 punch card = 100 bytes
 - 1MB = 10K cards
 - OS/360 was several feet of cards
 - New problems:
 - Need preemptive scheduling to maintain adequate response time
 - Need to avoid thrashing (swapping programs in and out of memory too often)
 - Need to provide adequate security measures
 - Success: UNIX developed at Bell Labs so a couple of computer nerds (Thompson, Ritchie) could play Star Trek on an unused PDP-7 minicomputer
History of Operating Systems (cont.)

- Phase 3 — hardware is very cheap, humans are expensive

6. Personal computing
 - CPUs are cheap enough to put one in each terminal, yet powerful enough to be useful
 - Computers for the masses!
 - Return to simplicity; make OS simpler by getting rid of support for multiprogramming, concurrency, and protection

Modern operating systems are:
 - Enormous
 - Small OS = 100K lines of code
 - Big OS = 10M lines
 - Complex (100-1000 person year of work)
 - Poorly understood (outlives its creators, too large for one person to comprehend)

History Lessons

- None of these operating systems were particularly bad; each depended on tradeoffs made at that point in time
 - Technology changes drive OS changes

- Since 1953, there has been about 9 orders of magnitude of change in almost every computer system component
 - Unprecedented! In past 200 years, gone from horseback (10 mph) to Concorde (1000 mph), only 2 orders of magnitude

Changes in “typical” academic computer:

<table>
<thead>
<tr>
<th></th>
<th>1981</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPS</td>
<td>1</td>
<td>400</td>
</tr>
<tr>
<td>price / MIPS</td>
<td>$100,000</td>
<td>$50</td>
</tr>
<tr>
<td>memory</td>
<td>128 KByte</td>
<td>64 MByte</td>
</tr>
<tr>
<td>disk</td>
<td>10 MByte</td>
<td>4 GByte</td>
</tr>
<tr>
<td>network</td>
<td>9600 bit/sec</td>
<td>155 Mb/s</td>
</tr>
<tr>
<td>address bits</td>
<td>16</td>
<td>64</td>
</tr>
</tbody>
</table>

Modern OS Functionality (Review)

- Concurrency
 - Multiple processes active at once
 - Processes can communicate
 - Processes may require mutually-exclusive access to some resource
 - CPU scheduling, resource management

- Memory management — allocate memory to processes, move processes between disk and memory

- File system — allocate space for storage of programs and data on disk

- Networks and distributed computing — allow computers to work together

- Security & protection

More Recent Developments

- Parallel operating systems
 - Shared memory, shared clock
 - Large number of tightly-coupled processors
 - Appearance of single operating system

- Distributed operating systems
 - No shared memory, no shared clock
 - Small number of loosely-coupled processors
 - Appearance of single operating system is ideal goal, but not realized in practice
 - May try to simulate a shared memory

- Real-time operating systems
 - Meet hard / soft real-time constraints on processing of data