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In this paper, we apply classical upwinding
schemes |4 and exponential fitting {8{and| 10|, denoted
by UP and EF respectively, to a number of egquations from
the literature |1|, [6], |[1l]and /12|. The aim is to
solve the equations without the use of mesh refinement
or other techniques requiring greater computational
effort with increasing stiffnesgs.

Another requirement, particularly desirable if the
method is to be included in a general package for the
solution of differential equations, is that it should
also be efficient for nan-stiff problems.

We consider problems of the form:

gu" (x) +a (x)u’(x)+a0(x)u(x)=f(x) (1)

u{a)=a, U(l)=8 where a=-1i or Q.

If a_(x)<0, these satisfy the maximum principle
and hence are stable. Both schemes considered reflect
this by yielding linear equations of negative definite
type, for all h (the mesh size) and ¢>0, and hence are
uniformly stable. The method for linear equations in
2] is not of negative type for turning point problems
and a suitable adaptation is preposed in Ili.
Convergence properties for particular cases of (1) are
given in |4}, ISL, lsl, IQI and |lo|.

A8 a test for ﬁy&iform) convergence we compute

M =max.|u. - u Ir
where u, dendtes the appxoxig;ati.cn to u(x,) obtained from
the dif%erence scheme. If M <chp, and thé method is
consistent, then by Theorem 2 in |9], the method is
convergent of order p (uniformly in € if C is
independent of c¢),

The first class of problems considered is that for
which a_<0. All problems of this type from |1| and |11},
except ghat in Fig. 4, were solved successfully using
either UP or EF. However, as is well known, upwinding
gives inferxrior results for e=h, since the boundary
layers are expanded. Examples are given in Figs 1 and 2
and Tables 1 and 2. The results in Table 1 suggest that
UP is O(h)convergent uniformly in ¢, whereas EF is O(h2)
convergent for h<<g and 0O(h) convergent uniformly in €.

In general, we cannot expect good results if a
is not strictly negative; examples are shown in Fig. 9
and in Table 3. The latter problem is ill-conditioned
and varies greatly with small perturbations of the right
hand side (cf. [1|). That negativity of a_(x) does not
always guarantee a good rate of convergencg is shown in
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Fig. 4. Finally, in Figs 5 & 6, we show cases where the maximum
principle is violared, Lut EF and UP still work. The results for
the example in Fig. 5 are in good agreement with those of Pearson
for e=10 7.

These results for linear problems lead us to expect that
the methods will yield good results for quasilinear problems if
the linearised equation satisfies the negativity requirement on ao.
In our experiments we used neither a Davidenko process nor a
particularly accurate initial gJuess. Fig. 7 shows one solution to
a problem from {6]. This does not have a unique solution, but
either solution can be racoverad by an appropriate choice of
initial guess. Example 8§ from (6| was also solved; here, taking
h=l/£6, the errors were less than 10 ’/ for EF and approximately
7x10 3 for a centered difference scheme. A similar problem, given
in |12]p.354 was solved with error of order 10 ’/ by both methods.

A particularly interesting problem is gu'+uu’-u=0, with
u(0)=A and u(l}=8. This is discussed in |3| pp.29-38 and [71.
The solutions exhibit boundary cor interior layers depending on the
values of A and B, cf. Fig. 8. 1In the linearised egquaticn, using
Newton linearisation, ao=w‘vl, where w is the approximation to u
computed at the previous iteration. If w'>l, a_ is positive and
the Newton process does not converge rapidly or it can even
converge to a spurious solution. If the lipnearisation is changed
to one which preserves the negativity of a the carrect solution
is obtained, ¢f. Fig. 9.

The methods are alsog applicable to problems with mixed
boundary conditions, an example of which is shown in Fig. loO.

O!

CONCLUSIONS

In general, fitting is more accurate than upwinding,
particularly for h=¢. It seems, however that upwinding is slightly
less sensitive to instabilities in the differential equation. For
nonlinear problems, convergence depends primarily on the
linearisation chosen. With a correct choice of linearisaticn, both
methods yield good approximations using a coarse grid and a small
number of iterations fusually less than 20), in most cases fitting
giving more accurate results for the same number of iterarions.

In computing the results given below, a DEC~20/60C was usged.

The programs were written in single precision FORTRAN. The graphs

were plotted by joining the values at mesh points with straight
lines.
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Table 1

{(Values of Mn) ]_Ll ;y D.147

e’ 4%yt ~u=0 u(=1Y=1, u(l)=2

[ e=10"¢ £=10""
n Up ! TF UPREF
1/32 0226 | .0244 0262
1/64 .0129 i L0105 2156
1/128 L0071 g .C033 D083
1/256 L0037 i .C009 2043
|
Table 2 (Values of u:) 1], p.35 , h=1/20
lO'Gu“~xu'~5u=O , Ul(=1y=1, u(l)==Hk
The solution is u(x)=e_(X+l)/E-He(x“i)/€+O(E)
Abrahamsson
X Scheme I | Scheme I'T EF up
-3.9 4x10710 9x1072 5x10=1!
-0.8 2x10”t? 1x1072 4x10721
-0.7 1x10~28 1x10~3 : 5x10~31
. - - - -
: | uBf<10728 luB|<1075 |uf|<10738 <1073
0.7 -5%x10~ 22 ~7x1Q™" ) -2%10°
0.8 -9x10729 -5x10"3 -2x1072!
0.9 ~2x107 10 ~5%1072 -3x10” 4!
Table 3 (Values of u?) 1], p.37
1078%u"—xu'+5.5u=1/3 , ul{-1)=1, u(l)=h
et A = 1/16.5, then the soluticn is:
alx)=a+ (1-a)e” XFPD/E 0 ay o ("B E
ABRAHAMSSON'S SCHEMES
I I IT up EF
% h=.05 h=.01 h=.01 h=.05 h=.01 h=.05 h=. 0l
-0.8 1.19 1x109 .07 .06061 | .09 .06061 | -.002
-0.6 |.09 2x10? L0616 " .066 " .49
-0.4 |.063 2x10% .0607 " .061 " .06
-0.2 |.06065 | .52 .06061 " .06061 " 0606
0.0 |.06061 | .06061 | .06061 " - 06061 " .06061
0.2 |.06062 | .65 .06061 " .06063 n 0606
0.4 {.061 3x10t .06058 " L0613 " .06
0.6 |.069 3x104 .0601 " ,Q9 o .044
0.8 |.10 1x10° .057 " .22 " ~.03
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