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Abstract : We present results which characterise the behaviour of a linear non-selfadjoint
singular perturbation problem. We give criteria for uniform convergence for a non-turning,
simple turning point and one multiple turning point case and indicate the uniform methods for
higher order cases. The consequences for quasi-linear problems are discussed.

Subject Classification : AMS(MOS): 65L10; CR: 5.17.

We consider the following singularly perturbed boundary value problem:
Lu(z) = eu” (z)+a(z)u’(:r)~b(:z:)u(x = flz) I <z < (1a)
u(ly=A , u{r)=258 {1b)

where we assume

b(z) >0 )

in order that (1) satisfy a maximum principle and be uniformly stable. We consider a class of difference

schemes characterized as follows:

D D_u}p + afD ut - bhut =1} (3a)

uby=A4,uh=8. (3b)

where

D.u} il ¢f>0

[
D= 1p up if af<0.

(]

1. Non-Turning Point and Simple Turning Point Problems
In Farrell [4] {5} sufficient conditions were derived for a scheme of this form to be uniformly convergent

for a pon-turning point problem specified by

a(z) > e >0 (4)

In this case, the problem exhibits an exponential boundary layer at z == {. The necessary
conditions and sufficient conditions each specify that the scheme must model this well in the region
where it dominates the behavior of the solution. {cf Farrell {4] {5]). This is what has been termed

exponential fitting in the literature.

Theorem 1.1t If a difference scheme has the form (8) where €, a;h, b,;" \ j"»‘h are bounded and
satisfy the conditions t>0, a;"‘ > ek >0, bih >0 M
| ef-a(z) | < Ch (m
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| bf-b{z;) | < Ch ()

| fA-1 (=) | < Ch (v)
and for any given ¥ such that 0 < T < I
Lo - o(a(0)p)| < Cpp(p)z e 4 Chola(0)p) 0Lz <F (Va)
where 0 < ¢ < 2; +Ch, p(p) fs a polynomial in p
and oz} = Z
e®-1
and | ¢t -¢e | < Ch F<g <1. (Vb)

then (8) is uniformly convergent of order h to the solution of (1), for alh < hy < F.
These conditions are satisfied by many schemes including constant Il'in fitting {2], I'in fitting [7} and
complete exponential fitting.

For a simple turning point problem, with turning point at * = ¢,
a(t)=0, a' (t)540 (5)

we can have ecither a repulsive turning point a' (t) < 0 or an attractive turning point a' (t) > 0.
In either case, we require the additional condition b {t) > 0. In the former case, Berger, Kellogg and
Han 1] have shown that a similar form of fitting is required to that in the non-turning point case. For
an attractive turning point, the behavior is characterized by the parameter

)\mxa(z)/b(z)izﬂt' (B)

In this case, the problem exhibits an internal layer of corner. or cuép type. This does not require
exponential fitting but only a “‘stronger” version of upwinding, which propagates the correct boundary
conditions. Thus we may replace (Va) and (Vb) by

lex~e| < Ch{]a(z)]| +4) ™)

We remark that the restriction of order of convergence to X for A < 1 is intrinsic to the problem
and arises from the solution of the reduced equation which contains a term of the form |z —¢ | A
This rate is attained in practice by schemes such as upwinding, Il'in’s scheme, Abrahamsson's scheme

and Samarski's scheme.

2. Repeated Simple Turning Points

If we consider a problem, in which @ (%) has more than one simple turning point, the exponential
fitting is required in the vicinity of an exponential layer if it exists, but “strong upwinding” is suflicient
elsewhere. To be precise if a(!) < O then fitting is required at z = { and if a{r) < 0 then fitting
is required at z = r. Also if a(z} has an attractive turning point then the uniform rate of
convergence is limited to min (X, 1) where X is defined by {6}.

3. Multiple Turning Points

We now consider the case when a{z) has multiple (simultaneous} zeros. We say ¢ (2} has a zero of
order p at ¢ if

alid¢)=0 0<i <p -1 and a?(t)30. (7
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we must first determine the conditions under which the
d also where and of what type are the boundary or
if ¢ == { or r. Uniform stability

To analyze these more general problems,
solution of these problems is uniformly stable ap

interior layers. We say a turning point is a boundary turning poin
results are given in the following lemmas, for cascs with even and odd order turning points respectively.

Lemma 3.1z If u is the solution of (1), a(z), b(z) are continuous, a (z) has one turning point at
t, either af the boundary or of even order and

b(t) >0 (8)
then u satisfies o uniform stability result of the form:

lu(z) ] < max({A 1, [B)+CHSf{2)]e - | (9)

Théorem 3.2: Ifu is asolution of {1}, (8) and
(z —t)a(z)+b{z)2p>0 1<z<02 (10)

then u satisfies a uniform stability result of the form (9).
This is a quite general result. To rewrite 1t in a form more familiar from turning point problems we

adopt a format similar to Lemma 3.1.

Corollary 3.3: If ¥ is a solution of (1), @ and b are conlinuous, & {z) has only a single turning
point, {, of odd order and

(i) a(e)/(z -t} 28>0 Y
(i) 8(t) >0
then u satisfics a uniform stability result of the form (9).

We now examine the nature of the solution of (1) in greater detail. In particular we determine the
existence and location of boundary layers. We first define a norm on C * I, r] by

k .
|/(:c)1k= Y1 e9) 1w (12)
{ =0
By a generalisation ‘of a lemma in [8] one can show that, if a{l) < O then there is no boundary layer
at | and similarly if @ {r) > O there is no boundary layer at r.

To characterise the behaviour of the solution in the neighbourhood of a turning point, we proceed
as follows. At each turning point we must, by Lemma 3.1 and Corollary 3.3 have 6 {t) > 0 in order
that the problem be stable. The nature of the reduced solution near a turning point of order p
depends on the parameter:

t
xm= ae) = (13)
alPl(t)
Note that, by the stability criteria, b (¢£) > 0 and hence |A]| > 0. We require that the turning
points are discrete in the sense that there exists a neighborhood of each turning point not containing
any other turning point.

We remark that for a problem with a number of turning points, {;, f == 1, k, the result is true

for all of them if we replace X and b (£} by maxX(¢ ) and min& (f; }. Bach of these exists and is finite.
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Io particular for a general problem we require b(z} > b > O forstability and thus b (t}) 2> 8 >0

We are now in a position to state the major result on the behavior of the solution near.a turning

point. For convenience we assume the turning point is at £ == 0.

Theorem 3.4: Let a € CPFU-L 1A C™[-L 1, b and [ €C™[-L 1, m >1,
0<ex<1

lallz)] > (a0} /2] 1<z <1 (14)

i
) 6(0) > 0, a(z) has a zero of order p > Lotz = 0, and in addition, if p is odd, X > 0.
of
(i} 6(z) >4 >0o0nl, 1} and a(z ) has a zero of order p at 2 =0 and A < 0
then for 1z | < 1/2
[eli)z)] <C 1<i<m (15)

where C depends only on the set T defined by:
{la]mr |(1 |p+l? !b [m! If ‘mr)\sb(t)’on iA l1 lBlum}

and C , is the stability conatant.

We have examined the behavior of problems having ome or more turning points in the interior.
Depending on the sign of a{z) at the boundary, the solution will have a boundary layer or will differ
little from the solution of the reduced equation at the boundary. With the exception o1 the simple
turning point case, they will be smooth in the interior. Stability criteria for the difference scheme (3)
can be derived in a similar manner to those above and are essentially analogous in form.

4. Turning point of odd order p > lat z = O with X > Oon -1, 1.
Since A > 0 and b{z) > 0, we have by (13)
5(0) > 0 and al?)0) >0 (16)

It follows from (14) and (15), that a(-1) < 0 and a(1) > 0 and hence, by {8], that in a
peighborhood of the endpoints

[el)dz)] € C,1<i<m, 1-6< 2] <1 (17)

Also, in any internal interval not including zero, one can show that
[«lz)] € 1<i<m (18)
Finally by (14) and (16) and X > O, we can apply Theorem 3.4 (i} to give
leflz)} ¢ 1<i<m, |z]| £1/2 (19)

Combining (17), (18), {19) we have the following theorem.

Theorem 4.1:  If (2), {8), (18) and (14} hold, p odd, p > 1 and X > O then the solution of (1)
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satisfics

[e¥)dz)] < C 1<i<m, -1<z <1

Thus the solution in this case has no rapidly varying behavior anywhere in the interval. It is thus :
regular perturbation problem rather than a singularly perturbed problem. In fact we can apply a1
argument similar to that in {1} on [~1, 0) and it’s analogue for ¢ {1} > 0 on {0, 1] to give the followin

result,

Lemma 4.2:  If (2}, (8}, (18) and (14) hold, p odd, p > 1 and A\ > 0 then the solution of (1
salisfics

lufz) -2z} S Ce 0< fz| <1

where vo(T) s the solution to the reduced equation satisfying tg(-1) = A for < 0 ane
ug(l)= B forz > 0.
In fact we could extend this result to = 0 also provided we define #o{0) as the limit }Sim  o{ ).
-+

Lundquist [9] showed that if the coeflicients a {2 ) and b(z ) were aralytic then the reduced solution
was bounded on the whole interval. This can also be used to give an explicit regular expansion for the
solution. As a consequence of Theorem 4.1 any scheme which is uniformly stable and consistent is also
uniformly convergent. Thus any of the schemes satisfying the sufficient conditions for either the nop-
turning or simple turning point problem are also uniformly convergent for this problem.

6. Turning point of odd order p with A\ < 0.
Since A < 0 and b (z) > O, we have by (13)

5(0) > 0 and alPl0) <0 (20)

It follows from (14) and (20), that a(~1) > 0 and a(1) < 0. In this case we require the additional
condition

b(z)>6 >0 -1<z <1 (21)

for the stability of the solution. By similar arguments to those used earlier we can show that the
solution exhibits boundary layers of exponential type at both boundaries.

Theorem 5.1z If (2), (8), (13), (14) and (£1) hold, p odd and X > O then the solution of (1) satisfies

| “(.‘.)(x)l <C +' C ¢ le20lz + 1)/e + Cele2a{l - =)/ ,
Jorall-1 < 2 < 1.

8. Turning point of even order with A < Oor XA > 0

Since A\ < O and b{z)} > O we have

b{0) > 0 ’ (22)
In additicn, since the turning point is of even order,

a(z} >0 -1€z <1
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and thus ¢ {-1) > 0, a (1} > 0. Thus the problem has a boundary layer only at z = —J,

Theorem 6.1:  If (2}, (8), (15) and (14) hold, p cven, X < O then the solution of (1) satisfiee, for
1<i<m,

[ulz)] € C + Cele-2alz + 1)/ 1<z <1

We thus see the bebavior is similar to the non-turning point problem with a {2} > @ > 0. The case
with X\ > O is entirely analogous except the boundary layer is at the right-hand end of the interval.

We hypothesize that a natural generalization of the schemes which are uniformly convergent for
the pon-turning point problem are also uniformly convergent for these problems. Numerical results
confirm this hypothesis. For quasi-linear problems a similar situation exists. If the problem exhibits
boundary layer or internal layer behavior of the type which exists in linear problems, then the same
methods yield good results. If the behavior is exhibited only bf non-linear problems then the results
are less satisfactory. In [5] we illustrated this for the problem,

eu” fuu' -y =0
u{(0)=A , u(l)=28,

which is considered in Howes [68]. This problem exhibits different behavior depending on the boundary
values, A and B. Among these are hyperbolic tangent and cotangent (exponential) layers, at 2 = 0,
shock layers, corner layers and transition layers. We linearize the problem first and then discretize this
linearized problem. It is obvious that using Newton's method for linearisation is often inappropriate.
This is because the linearised equation does not exhibit the same type of behavior as the non-linear
problem. In practice, only the hyperbolic cotangent and some of the transition layers are modelled with

an accuracy approaching uniform convergence,
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