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Abstract: We survey a number of methods for obtaining accurate solutions of a model turning-
point problem. These include fitted schemes and schemes with a-priori or a-posteriori refined
meshes. We then describe a new, uniformly G(h}, fitted scheme. This scheme is constructed using
a variation of the approach of El-Mistikawy and Werle by replacing certain coeflicient functions
in the original differential equation by piecewise constants and then solving this approximate
problem exactly. The resulting three-point difference scheme is truly uniform O(h) and does
not suffer from the degradation of all other known fitted schemes on uniform meshes where
the uniform convergence rate can be {depending on the problem) O{(A*) with 0 < A < 1. The
scheme is easy to describe and analyze (using known stability results); however it is somewhat
complicated to compute, since the difference coeflicients involve parabolic cylinder functions. A
complete analysis and numerical results are presented.

1. Introduction. We consider a mode! turning-point problem of the form

'—E'U:” i ma(m)u’ -{- b(m)u o= f(j;‘)’ ““]_ < T < }L

(1)
u(~1} = A, u(l) = B.

Here € is a {“small”) positive ﬁparameter, and the functions a, b, and f are “sufficiently smooth.”
In addition, we will impose the following conditions on the coefficient functions, which will be
assumed throughout the rest of the paper:

1.a(z) >0, ¢{0)=1, and
2. bz} >0, b0) > 0.

Under these conditions, the problem (1) 1s well posed for € > 0 {and in fact possesses a maximum
principle} and has a single, isolated turning point of cusp type at = = 0. Setting ¢(0) = 1 is a
convenient normalization. As ¢ — 0, the unique solution of (1) converges to the solution of the
reduced {e = 0) equation, which is characterized by the parameter

A= b(0)
and admits the representation (see [1])

¢, —1<z<0
?L(g;)zi)(fﬂ)+IU(iC)lﬂflA{ cl? O <gx<1.

Here ¢ and c¢; are constants, and v and w are smooth, with w{z) > 0. We are especially interested
in the case 0 < A < 1. '

Such problems have been rather carefully studied. Stability results, and in particular their
dependence on A, have been examined in [1]. A-prior: estimates on the solution and its derivatives
have been obtained in [4]. And asymptotic analyses can be found in [6], [7], [9], [10], and [18]. We
will make use of many of these known results is what follows.

Numerical methods for problems like (1), and more general related problems that exhibit similar
solution behavior bui which may be nonlinear or systems of equations, have been considered by
several authors. For fitted schemes, Emel’ianov [6] has shown the Allen-Southwell-I'in scherme to be
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uniformly O™/ Nijjima [17] has analyzed an exponentially fitted version of the Engquist-
Osher scheme and proven uniform O(h) convergence in an L* norm; Berger, Han, and Kellogg [4]
have shown the El-Mistikawy-Werle scheme to be uniformly O{h™=MH): and Farrell (8], [9], and
[10] has given sufficient conditions for various other schemes (including standard upwinding) to
have this same uniform rate of convergence.

Using a Petrov-Galerkin framework, O'Riordan and Stynes [20] have constructed a scheme on
a uniform mesh, and Stynes {19] an adaptive scheme on a quasi-uniform: mesh, both of which are
proven to be uniformly O(h) with respect to an L' norm. Lorenz has analyzed schemes for such
problems and in [16] gives a higher (classical} order modification of the Engquist-Osher scheme.
Graded-mesh schemes have been developed by Liseikin [15] and Vulanovié [21]; while first order
vector systems have been studied by Ascher [3], Kreiss, Nichols, and Brown [14], and Brown and
Lorenz [5].

2. A new uniformly O{h) fitted scheme. In [4], the following scheme is analyzed. Write the -
problem (1) in the form

Lu = —eu” — plaw + gla)u = flz),
and assume thai p has a single simple zero at ¢ = 0, p'{0) = 1, and ¢(z) > 0. The parameter
A {denoted # in [4]} is then given by A = ¢{0). Construct a uniform grid of mesh-width k, and
replace p, ¢, and f by functions p, ¢, and f that are piecewise constant on this grid so that

o — Blloo + llg — @lloo + I|1f = Flleo < Cha

Let ¢ := w1 denote the difference between the true solutions of the problems Lu = f and Li = f
(with identical Dirichlet boundary conditions). Then the nodal values of i can be computed by
solving a three-point difference equation (the coefficients of which involve exponential functions),
and it is proved in {4] that

: nenh,oo < Chmi“{)\‘l}_

This is somewhat disturbing, since in the non-turning-point case, such a discretization is uni-
formly O(h?). Tt is not difficult to identify where problems arise. First recall that the behavior
of the solution u of (1) in the case of € << 1 and 0 < A < 1 is approximately modeled by the
“cisp-like” function (22 4 )2, In particular, we have the following bounds, which are weaker
consequences of estimates established in {4]:

W) < Cle®+ 9T, k=01, @

Next, note that both L and L possess maximum principles. One consequence of this property
of L is the validity (uniformly in i and ¢} of the stability inequality

[olleo < C{lIL0}leo + fo(=1)] + ()]} (3)

for all sufficiently smooth v. We note that stronger stability estimates are possible (see, for example,
(1]}, but we will not require them here.
Now the error, e, satisfies

Le=~(p—p)u' +{q~ q)u+(f ~ f),
from which now follows
lelioo < CLllp = Blloalitlloe + flg — @lloollelleo + [1F = Fllec}-
The last two terms above present no problem. Using the a-prior: bounds (2}, one can establish
o> = O ).

So when ¢ = h?,
lp = Blloo fftlloe = O(™).



In numerical experiments, this is exactly the rate of convergence that 1s observed. We note that a
modification of this scheme done in {4] effectively handles the cases e = A” with p > 2, which for
the unmodified scheme above can get even worse.

'This deterioration of the uniform convergence rate can be circumvented in the following way.
Suppose that one has an approximation p to p of the quality

[{p —p)(2)] < Chlz.
Then it would follow that

N f 2 A a7y
0= P < Ch_pmas {1zl + 05"} < O

This degree of approximation can be achieved by writing our problem in the form (1) and ap-
proximating a, b, and f {instead of p, ¢, and f} by pilecewise constants. We have proven the
following.

Theorem: Let the appromimate problem Li = f be constructed by replacing the functions a, b,
and fin (1) by functions @, b, end f that satisfy

lla = alloo + [[b = bllow + [1f = flleo < Ch.

Then the error, e = u — @, between the solulion of the original problem (1) and that of the
approzimate problem (with the same boundary condiitons) satisfies

llellee < C'R, 0<e<oo, O<h<1

We note that the only ingredients required to make this proof work are the uniform stahility
(3} of the approximate operators, the uniform boundedness of the true solution, {ulje, and the
a-priort estimate Ju/(z)} < C(2? +€)*~1/2. We now consider the characterization and construction
of the exact discretization for this approximate problem.

3. Exact discretization of the approximate problem. We suppose that we have a given
uniform mesh z; = th, 1 = —n,...,n, b = 1/n, and piecewise-constant approximations to ¢ (and b
and f) given by
alz) = a;, =y <2z < Tigyq .
and satisfying |la — @ll.e < Ch {and similarly for b and f). Typically, one would take a; = (a(z;) +
a{2:41})/2 and so on, but numerical evidence indicated a better choice for the two points 1 = —1
and 7 = 0 to be given by @_: = @y = a(®q), which makes the coeflicient function a continuous at
the origin.
We now wish to solve {for nodal values) the problem

L = —eti” —za@(x)i' + b(x)u = flz), —i<az<l

(4)
i(—1) = A, u(l) = B,

Constructing an exact discretization for such a problem can be looked at from various points of
view: utilizing L-splines [12], using a Petrov-Galerkin framework (as in [20]), using pateh funetions,
using Marchuk type integral relations, etc. They all lead to the same thing, and that 1s a three-
point formula that can be described in terms of the patch functions {i;}. These are associated
with the local formal adjoint operator LT and satisfy

Lty 1= —epl + za(z)yl + (@ + b)) = 0, Ty < T <3, 2 << Tipr

ti(zio) = i(win) = 0, i) = 1.

In terms of these functions, we have the following theorem, the proof of which follows by integration

by parts of
Ll — T4l =
fapi = Litwpy = -+ .
1

Tl T



Theorem: The solution of the approzimate problem (4) satisfies the difference scheme
- _ = Logl . ,
cty u{zia) oo ot{x) + at{zi) = i, t=—n+1,...,n—1,
-1

@y

where 1; 18 the local pateh function defined cbove and the difference coefficients are given by

Qi —y = Meqﬁ;(mjwl):
wio = —elyllet) - viaD)} + mfa(e}) - a(e7)}, and
Qi = QLZ@:H)

We make some observations. First, the nonsingularity of the associated tri-diagonal matrix
follows from the well-posedness of the L problem; in fact the discrete problem inherits analogous
stability properties (see, for example, [12}). Second, the computation of the right-hand sides for
the discrete equations can be simplified in the following way. Since f is plecewise constant, we
have

= FeD) [ fa) [

L iy
Also, integrating both sides of Lyp; = 0 from ;-1 to z; and from z; to x,4; yields the relations
_ Ty
—efyi(e?) = Wllat )} + aleD e+ Wa) [ =0
i1

and -
—eful(ag) - wieD) +ale)e+ B [ vi= 0
Pied

So the needed integrals of the patch functions can be obtained from the already needed left and
right derivatives of the ¢;’s at the mesh points.

Solutions of the homogeneous 1-equations can be obtained in terms of parabolic cylinder func-
tions (as in [4] and [18]}). On a given subinterval, write

—ev” fzav +(@a+dw =0 as —&" +zv 4 fv =0,

with & := ¢/a and f§ := (& + b)/a .
Seek solutions in the form

This will then be a solution if and only if ¢ satisfies

_6”—{-—(%+ﬁw§>ﬁ:0,

which is the defining equation of the parabolic cylinder functions and has a basis of solutions given
by U{a,7) and V{a,z) with a = § — 1/2 (see [2]). |

The patch functions, v, can then be expressed as linear combinations of the functions

3 =2
i

vi{x) = exp (%) UB—1/2,8) and w(z) = exp(—é‘) V(g —1/2,%).
Using the recurrence relations

. 1
Ula,z)+ %U(a,m) = - (a+ 5) Ula +1,z)

and :B
Viia,a)+ B—V(a, )= Viet+1,2),



one can express the derivatives of vy and vy as

8 72 N , 1 ( 7?2) .

viz) = —L—exp| — [U{B+1/2,3) and vi{zc) = —=exp| — |V(F +1/2,%),

3 () N p 1 (8 /2,%) 2lz) 7 1 (B+1/2,%)

so that formulas for all of the difference coefficients and right-hand-side weights can be given in

terms of the values I7(8—1/2,8), U(B+1/2,3:), V(8 ~1/2,&;), and V(F+1/2,&), 1 = —n,...,7n.

4. Numerical results and concluding remarks. Some numerical experiments were conducted
to appraise the performance of this scheme on some model problems. We include a table of results
for the problem

—eu” — zeu' + .5e7%u = (x4 3)7, —~l <z <l
u(-1)=1,. u(l)y=2.

An exact formula for the true solution of this problem is not known, and so the approximate
errors in the numerical tests were estimated by comparison against a more accurate approxima-
tion, computed using the same discretization on sufficiently finer grids—this was determined by
experimentation and typically involved four or eight times as many mesh points.

The above problem seems fairly typical; it has no special symmetries or whatever, and it does
not impose any “premeditated” structure on the solution. The limiting (¢ -+ 0} solution has an
|z]5-type cusp at x = 0 (here A = 1/2), and it satisfies

u(—1) =1, u(0)=2/3, and u(l)=2.

The numerical tests reported below are for experiments where both ¢ and A tend to zero
simultaneously (but at differing rates). Tabulated are the errors, |/efjs o, in the mesh sup-norm
along with the approximate convergence rate p = logy(|le(R)||noo/lle(1/2}[h00). In theory this rate
should always be at least one for any of these approaches to zero, and this indeed is observed in the
table. Tn contrast to the non-turning-point probiems, where the maximum errors (as a function of
¢) occur around € = h, here the rate seems to decrease until € = h? or so.

Numerical results and approzimate convergence rates

€ =1 e=h € = h? € = h3 e = h*

n | lellies | P [ Telneo | P L llelbes | 2 | lellnoo | P | llelree | P
402y 123 1042y 1.6 | 19(-1) | 1.0 | sl | L1 .32(-1) | 14

8 |.70(-3) | 2.3 .31(-2)  1.8].95(-2) | 1.2 | .14(-1) | 1.4 | .12(-1) | 1.9
16 | .15(-3) 1 2.2 1 91(-3) | 1.9 | .41(-2) [ 1.3 | .52(-2) | 1.6 | .32(-2) | 1.2
32 | .32(-4) | 2.1 |.24(-3) | 20 | 17(-2) | 1.3 1 .17(-2) | 1.5 | .14(-2) | 1.2
64 | .73(-5) | 2.0 | .62(-4) | 2.0 | .69(-3) | 1.3 | 61(-3) | 1.4 | .61(-3) | 1.2
128 | .18(-5) | 2.0 | .15(-4) | 2.1 | .28(-3) | 1.3 | .23(-3) | 1.1 | .26(-3) | 1.2
956 | .46(-6) | 2.0 | .37(-5) | 2.1 1 .12(-3) | 1.2 | .11(-3) | 1.1 | .11(-3) | 1.2
512 | 12(-6) 2.0 | .84(-6) | 2.0 | .50(-4) | 1.2 | .49(-4) | 1.1 | .50(-4} | 1.2
1024 | .31(-7) 21(-6) 21(-4) 22(-4) 23(-4)

At this point, this result seems to be primarily of theoretical interest. However criticisms of
schemes involving special functions, like the El-Mistikawy-Werle formula, apply here even more so,
since parabolic cylinder functions are not as widely available on computing systems and do not
have as many nice properties as exponential functions to simplify their handling. Furthermore,
this type of approach does not readily generalize to higher dimensions. We hope to report in the
future on higher-order uniform schemes for model problems like those considered here using the
more general framework of [11] and [13].
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