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Abstract: It is well known that enly uniformly convergent schemes model the boundary layer
behaviour of singularly perturbed problems well on uniform meshes. One criticism of such
methods is that the evaluation of the exponential fitting factor involved is time consuming. We
shall consider theoretically and computationally how accurately the boundary layer behaviour is
modelled, if we approximate the exponential fitting factors by rational expressions.

We shall consider finite difference schemes for the following singularly perturbed ordinary dif-
ferential equation:

eu{z) + a(z)(z) — aju{z) = flz), O<az<l, (1la)

u(0) =4, u(l)=B. (1b)

where a{z),b(z) and f(z) are sufficiently smooth, and
O<a<alz)<a (1e)

This problem has an exponential boundary layer at o = 0. It is well known ([1][7]) that standard
finite difference methods such as the centered difference and upwinded schemes do not model
the solution well in the region of the boundary layer. Consequently alternate methods, called
exponentially fitted methods, were proposed which model the boundary layer behaviour better
i6]17(8] and which satisfy a stronger convergence result known as uniform convergence. That is

u(z:) = v ||aeo < ch

where u is the solution of (1) and u" is the solution of the difference scheme and here, as elsewhere
throughout this paper, ¢ is & generic constant independent of & and ¢. The first of these methods
was the II'in-Allen-Southwell scheme, which can be written in the form

Lfuf = eof Dy D_uf + alz)Dyuf — blz)ul = fzi), 1<i<N-1 (2a)
ub = A, ul =B, (2b)
where h = 1/N,
D+Dmh:} - ! A + s .D.{:-'U.: - Mil—!};_—‘—a
and ;
of = o(p;) where o{z)= = i 7 and p; = alz)h (3}
er - &

One criticism of such schemes is that they all involve the evaluation of at least one exponential
at each point of the finite difference mesh. Our aim in this paper 1s to consider theoretically and
computationally how accurately the boundary layer behaviour will be modelled, if we approximate
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the exponential fitting factor of by a rational expression in p;. It should be noted that, since a
necessary condition for uniform convergence is that
I i = alpi)s
h%D,S!Ipnﬁxedo- o*(p )
such schemes cannot be uniformly convergent {1}{2}[3].

The type of rational expression we wish to consider is 0] ™ = pma(pi), where Pmaly) is the
Padé approximation to o{y), whose numerator is a polynomial of degree m and denominator is a
polynomial of degree n. Table 1, below gives p,(y) for 0 < m,n < 3.

Thus we consider schemes of the form

MRy = g g P DL D_ult™ ez ) Dl - brul Y = flwy), 1SS N4 {4a)

i

ug " =A, up" =B. (4b)
I
m 0 1 2 3
0 ! {1+ 1) A+ + 1) A+ 2+ +5)
1] 1o |O-R/eED | 0-D/aEE (1= D/ + F+ E + &)
2 1-3+5| 1-3+h O+ S+E) | (-3 H)/0+Er b+ i)
3| 1-+% | 1-prh | Q-EE -0 E) | 0¥/ G+ )

Table 1: Padé approximants p,..{y) to o{y)

The Padé approximation is guaranteed to be a good approximation to ¢(y) in the region near
y == 0. However, they do not necessarily exhibit the correct behaviour for y 2> 0. It is clear that to
preserve the correct behaviour of the difference scheme we require eo]"" —+ 0, as ¢ — 0, and hence
p: — 0o, If n < n then on the contrary £o;"™ — oo, as p; — oo. Consequently only the cases
where m > n are of interest. We should note that the cases (0,1), (0,2) and (1,0) are all well known
schemes. In the case (0,1} we have €0} = € and hence the scheme is just the standard upwinded
scheme. The case (0,2) has 0" = /(1 + %) which is just Samarskii’s scheme [7]{2][3]. Finally
one can easily show that {1,0) is, in fact, the standard centered difference scheme. It 1s well known
that the centered difference scheme is unstable, for singularly perturbed problems, and can give
rise to significant oscillations. This warns us that higher order approximations may not always be
more desirable. On the other hand upwinding does not model the boundary layer well, whereas
Samarskii’s scheme approximates it considerable better. The maximum error arises in general at
z = h when p; =~ 1. This case is illustrated in Figure 1 for the problem:

eu(z) + (14 2/ () — (z — 5)’u(z) = ~(° + 2%} (5a)

u(0) = —1, u(l) = 0. (5b)

In [7], it is shown that the error is given by

lu{z:) — ul'l] < ch[l+etexp(—ae™ (1 —=))], h <
lu(zs) — wi'] < clh+exp(—a(l —=;)/(ah +€))], >
and ' '
() — ud?] < ;;';J1 tetexp(—acH1l—-2)), h < ¢
() — uw?l < it +ep(—all ~wi)/{ah+e))], B = ¢
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Figure 1: Difference solution of (5} Figure 2 : 8°(y) and §°™(y)

respectively. It is clear that these estimates reflect the fact that Samarskii’s scheme is classically
order h? as opposed to upwinding, which is classically order h. Similar estimates can be derived for
the higher order Padé approximants and indicate that these are also classically order h?. Numerical
evidence confirms this result. Unfortunately it is not, in general, easy to derive any estimate of
the quality of approximation for h =~ ¢.

We wish to take an alternative approach in which we compare the solution of the Padé scheme
o that of the uniformly convergent Il'in-Allen-Southwell scheme.
Let us first note that schemes of the form (2) and (4) can be rewritten in the form

Lgui = €D+Dmui -t O‘.(l‘i) [(} - 9{)D+ui -+ 95D~u1'] + b(mi)ui —_ f(a:z'), 1 § Z S N — l, (Sb)
where 1

91' = —(1— a; ). 6

pz_( ) (6)

By rewriting L in the form L? it can be shown, using the criteria in [5], that, the IVin-Allen-
Southwell scheme is uniformly (oo, 1) stable, that is

uillipe < e {1 L5uillna + luol + funl} - | (7)

The same approach is not easily applicable to the approximate schemes, since it involves uniform
consistency of the scheme. The following argument gives a sufficient, but certainly not necessary
condition, for uniform (oo, 1) stability of the approximate scheme.

In a similar manner to (7}, one can show

max{|[ulpoo, [ D4uillni} < e {f L ullna + luo] + lunl}.

Hence

Hui“h,oo < e Lfu — L™ ugllng + L™ il 4 luol + lunl}
o= e{lla(m) [(1 =65 — (1 - 87" Dywf + a(wa)[0F — 67" Dovfinn
HIL™ " gl + ol + [unl}
c{lla(z (67" — 62)[Dowg — D_ufllln + | L™ usling + |uof + lunl}
= c{2]|a(z)(07" = ) ool D4 ufllng -+ L™ uillny + |uol + [unl}

Thus, if there exists a § independent of ¢, k and ¢, such that

2elja(z) (67" — 07 lnes £ 8 < 1, (8)

i



we have,
wsllheo < (/{1 8N {IL™ ullag + luol + lunl},

which is a uniform {oo, 1) stability result for L™",

Condition {8) essentially says that L™" must be sufficiently close to L*. However the condition
is difficult to verify and does not guarantee that the solution of the difference scheme will satisfy
a maximum principle. Assuming that b(z) > 0, the condition, in [2][3], under which the solution
satisfies a maximum principle is that o; > 0 for all 7. This would not be satisfied by any of the
cases with n == 1 or by o’?’z or 0?’3. On the other hand, all the cases with n = 0 or n = 2 do satisfy
o; > 0 and hence satisfy a maximum principle. Consideration of all these factors suggests that one
should chose an approximation that is super-diagonal, that is has m > n, and in addition has n = 0
or n = 2. Numerical results will confirm this opinion. We shall now prove a result which describes
the error of one of these approximate schemes in terms of the error of the I'in-Allen-Southwell
scheme, and a term which measures the degree to which pm (1) approximates o(y).

Theorem: Let L™ be a uniformly (0o, 1) stable operator and let u(z;) be the solution of (1) and
1" be the solution of (4), for 1 <¢ < N — 1, then

1

m,n e m,n

(@) — 1w laeo < crh+ Czll;(af =07 " oo (13)
3

where ¢;, ¢y are independent of 7,k and ¢.

Proof: Let e; = uf —u."". Then, in a similar manner to above we have,

L™, = L™ s — L™ = a(z)(67" — 67)[Diui — Dol

T

Now
27 el < () (6™ — ) eo mase (1D i, | D= ).

Further, we can show, in a manner analogous to that for the continuous problem in {4], using
estimates from [5}, that
[Dsufllay < ¢ and [D_ufflny S ¢

and, hence by the (0o, 1) stability of L™, that

leillnos < e (L™ eillna + jeol + lenl} = e L™ eifn-

Hence
fuf — ui" " oo < el = 6 llne0

i3 e

L e m,n
= cli—=(oi =)
However, as is well known, the II'in-Allen-Southwell scheme is uniformly convergent [21{3]61{7][8],
that is
lu(z:) — ufllpeo < ch.
Thus
=

[ulz:) = u" Mlheo < 1l + 2l —=(07 — 07" )fln oo

H

Theorem 1 indicates that the better an approximation o7"" is to ¢f, the closer to uniformly
convergent the difference scheme will be. This explains why Samarskii’s scheme is stperior to
upwinding since, as is illustrated in Figure 2, po(y) is a better approximation than poo{y) to o(y)
for all ¥ > 0. In the case of Padé approximants, one is guaranteed by classical theory that pma(y)
better approximates o(y), near y = 0, as m + n increases. However it is clear, from Figure 2 and
from Figures 3 and 4 of the ervor term (o°(y) — o™ "(y))/y in (13), that, for super-diagonal entries
in the Padé table, this term has a finite maximum which, for fixed n, reduces as m increases. Table
2 gives the maximum value of the error term and the point at whick it is attained.



I
m G 1 2 3
Max Error | ymax | Max Error | ymax | Max Error | gmax | Max Emror | goax

{ $.50000 0.0 .09445 1.718 0.03210 2.457 0.01265 3.037
i -0.5000 o0 -0.08962 | 7.987 1 -0.02343 6.439 -0.00726 §.202
2 o0 oG o0 00 (.6678 17.729 0.63119 12.310
3 00 o o0 o0 -0.5000 o0 -3.04481 | 31.620

Table 2: The maximum value of (¢™"™(y) — ¢%(y))/y and the point yma at which it is attained.

It should be noted from the table that p, ,(y) — (=1)"(n+1)asy — oco. Thus o(y) —punly) —
(—~1)"*}(n + 1). However the term appearing in the error estimate (13) is (o(y) — pan(¥))/y and
this converges $o 0, as y — oo, for all finite n. In general however the diagonal entries, as we
might expect from the behaviour of upwinding, do not give as accurate an approximation as the
superdiagonal entries with equal values of m + n. To state this more precisely, it is betier to
choose an entry {n,n + 2) rather than (n + 1,n + 1). Both of these involve the same number of
evaluations and hence are of comparable cost. Table 3 gives the difference between the solution of
the approximate scheme and that of II'in-Allen-Southwell’s scheme for problem (5). It gives results
for the case b = ¢, with a number of values of h varying between h = 1/10 and h = 1/500. It also
includes the error for schemes with i = 1/20, and a value of e chosen to make p; be in the region
of Yuax, thus causing the error term (o(y) — prn(y))/y to be close to its maximum value.

h=c¢ £ = Ymax
Scheme 10 20 40 500 h =20
0,0 ,661(0) .676(0) 678(0) 675(0) 680(0)
0,1 167(0) 168(0) .167(0) 164(0) 303(0)
0,2 396(-1) | .386(-1) .376(-1) .365(-1) 133(0)
0.3 .824(-2) | .776(-2) .737(-2) .694(-2) B72(-1)
1,0 -.193(0} | -.188(0) -.183((}) —.177({)) -.800(2)
1,1 -.255(-1) | -.242(-1) -.231(—1) —.218(—1) -.502{0)
1.2 -.354(-2) | -.325(-2) | -.302(-2) | -.275(-3) -.121(0)
1,3 -487(-3) ~.430(-3) -.384(-3) | -.329(-3) || -.368(-1)
20 .395(-2) .355(—2) .32].(-2) 281(-2) AT8(1)
2,2 383(-3) | .332(-3) .289(—3) .‘235(—3) .3(}3(0)
2,3 .413(4) 330(-4) 1 .273(-4) .200(-4) .596(—1)
3,2 A66(-5) | .365(-5) .264(-5) | .166{(-5) -.796(2)
3,3 —.419(-5) -.327(—5) -.231(—5) —.131(-5) -.239(0)

Table 3: Error in the solution for various values of k.

Note from this table that, for many values of h, the error with respect to II'in’s scheme 1s less
than might be expected from the behaviour of (o(y) ~ pun(¥))/y - Also it is slowly varying, with
respect to h, as might be expected of a function which depends primarily on p;. However, the final
column illustrates that this error may become significant, particularly if one does not choose the
approximation in accordance with the rules we suggested earlier.

It 1s clear that one can achieve good approximation to the boundary layer behavicur using
low order rational approximations. These schemes are not uniformly convergent but, for moderate
values of k, the additional error due to the approximation is of the order of the discretization error.
Better results could be obtained by using a judicious choice of approximation depending on the
value of p;, since the maximum error of the different schemes occur at different points. We have
discussed here only the Padé approximants. However other rational approximations might also lead
to good schemes. In particular the Best Rational Approximation which minimises the L., error
on the half-line (0, 00) might be a more appropriate choice. It should be remarked these schemes
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Figure 3: (o®(y) — a™™(y)) /v

behave similarly for simple turning-point problems and higher-order turning point problems, where
a(z) has simple and repeated zeros in the interval (0, 1).
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