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Abstract: We examine a number of variants of the Gauss-Seidel
method for the solution of linear systems arising from a singulariy per-
turbed differential equation. We show that, because of the dominant
role played by the characteristics in such problems, the rate of conver-
gence depends critically on solving in the flow direction and thus the
spectral radius is an inappropriate measure in this case. We introduce
the Symmetric Gauss-Seidel method and demonstrate that it performs
well for one and two dimensional examples.

Introduction

We consider the linear systems which arise as a resuit of the finife
difference discretization, on a uniform mesh, of linear singularly per-
turbed differential equations in one and two dimensions. Such prob-
lems are thecretical models for the physical phenomena of convection
dominated flow. It is well known that, when the singular perturba-
tion parameter ( representing the diffusion coefficient ) is amall, these
problems are difficult to solve numerically due to the prescence of sharp
boundary and/or interior layers. One approach to solving these prob-
lems is to employ a uniform mesh and either an upwind scheme or
an exponentially fitted scheme which at{empts to model the boundary
layer accurately {1}{3]. These methods respect the natural direction
of flow in the problem, given by the characteristics of the differential
equation.

One Dimensional Problems

We first analyse a sample one dimensional problem.
—eu(2) + p(z)e(2) + r{z)ulz) = f(z), <z <1,
u{0) = u{t} = 0.

We assume that r(z} > 0 and that r(2)} and p{z} have no simultanecus
zeros. The behaviour of the problem then depends on the zeros, if any,
of p(r) in the interval [0,1}. If p(z) > G(< 0) the flow is to the right
(left) and there is an exponential boundary layer at the left (right).
We reflect this fact by discretizing using an upwinded scheme in the
forward (backward) direction or exponentially fitted scheme. On a
uniform grid of size h = 1/(n + 1) the upwinded difference scheme is :

by e —eiugpy = f;, 15i<n,

‘U.G:TJ.RZO,

where the cocflicients a,, b;, ¢; are given by

€ i € 1
bi= 5+ '2—‘,1(1}’-‘{ tp)20, =t 5};(|P-‘| -p)20
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=5+ plnd+ izt

and p; = p(z), 7 = r{z;) and f; = f(z:). The matrix A € R™", of
the difference scheme is thus a tridiagonal matrix. It is easily shown
that this miatrix is an érreducibly diagonally dominant M-matriz {5,
p23] under the above assumptions, and thus that A= > 0, where the
inequality is meant component-wise.

Now consider the matrix splitting of A, into a diagonal I, a lower
triangular L, and an upper triangular U matrix, A = D — L — U, The
forward (backward} point Gauss-Seidel methods, which we shall call
PGS and BGS respectively, may now be written as

Mpb = Nou* 4 f, where My=D~ L, Ny =T,

Myttt = Npu® 4 f, where My=D-U, Ny = L.

In either case, the splitting A = M — N is a regular splitfing of the
matrix A and p(M~IN} < 1[5, Theorem 3.14}. Thus both itera-
tive methods are convergent with the same asymptotic convergence

rate, since ,o(.MJ}"le) = p(M{INGY = p(D™YL + UNY?, However,
although the asymptotic convergence rate is a good measure of the ul-
timate rate of convergence of these methods, II'in and Kellogg [2] have
shown that the initial rate of convergence for the two methods differ
considerably. It is wel! known that, in general, the error, as measured
in the Lo, norm, may increase initially. For this reason, in [2], the
initial error reduction was calculated by considering the matrix norm
of the iteration matrix, M ~*N|[jee

plz) of enesigneg. g2 p(z) 2 p>0

Ir: this case, it is shown in [2] that for mesh spacings h which satisfy
€ < .8ph the error reduction for the forward Gauss-Seidel (FGS) is

given by
2¢

and thus if € < ph*/2 the error reduction is monotonic. The analysis
is performed by writing

M7 Nl <

MW = (I- D LY 'D7W

and then estimating the norms of D™!'L and D~'U. These are re-
spectively strictly lower and strictly upper triangular matrices, withk a
non-zere subfsuper)-diagonal whose entries are given by

A+ mil +pi)f2 6+ {ipd - p:)/2

T 95+ ik Bi= 26 + |pe| + ik

{2
where § = ¢/h. Note that (1) implies very rapid convergence if € < h.
The backward Gauss-Scidel {BGS), on the other hand does not exhibit
this property. Conversely, if p{z) < 0, BGS exhibits rapid convergence
under appropriate conditions and FGS does not. Thus, if one solves the
linear system in the natural direction given by the characteristics, one
achieves rapid convergence. We shall see later that similar problems
arise if we assume p{z} has one or more zeros.

We shall now consider another iterative method which we shall cali
Symmetric Gauss-Seidel (SGS). This consists of an application of FGS,
followed by an application of BGS given by:

M;uk"'z/z = N_fuk + £,
M+t = Nyb+i/2 4.,

where My =D~ L,N; =1,
where My= D—UN;=1

Thus the iteration matrix is M,;‘N;,MJT‘N;. This may be considered
as a special case of the Symmetric Successive Over Relaxation Method
{SSOR) with relaxation parameter w = 1. Thus, as remarked in [4],
provided we store intermediate results, it requires no more calculations
per iteration than the FGS. Note that the FGS sweep is guaranteed to
reduce the error, but the BGS might increase it again. We shall show
that this is not the case, although the error reduction is only as good
as that for FGS.

THEOREM 1: If the mesh spacing h satisfies ¢ < .8ph the error reduc-

tion for the Symmetric Gauss-Seidel (SGS) is given by

2e

-1
M7Vl < W .

PROOE: This is similar to that of [2]. To simplify notation we write

{l.1f for [|-Hoo-
M TN = (|My NyM N (3)

{1 = D Uy D LI M Nl

IA

It is clear that D™ < DU and DL € Dglle, where Ag =
Do — Ly — Up is the matrix corresponding to 4 with r; = 0,Vi. Using
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similar arguments to [2], we have

MmE2s+p b
pas-1 kb JR— 4
M7 < PSR TR {4)
b+ p
-1 -1 2P 5
(DL < {Dy Ll %5 (5)
§ s+ p
-1yt -1 o ] s e
1-1B- W = - EDg el =1 TSR T (6)
Using (6}, it follows that,
- 26+
- DTS G - DT € S M)
+ 3
Combining (3), (7), (5) and {4} we get
- 2+pb+pmb2+p 6 2né
! < e = o
WM Nl S 5595155 6 %45~ 7

Thus SGS achieves the same rate of convergence as the FGS, which
solves in the characteristic direction. It is easily shown that SGS also
achieves the same rate of convergence as BGS for the problem with
p(z) < p < 0. This is illustrated in Figure 1 and Table L, which are
for the problem

—eu'{z) ~u(z) = -2, B<a <l

(8)
w(0) = ~1, w(i}=1,

with € = 000001, Tt should be noted that this problem has an exact
solution u(z) = 22 — 1 and thus exhibits no boundary layers. For all
the results exhibited, the initial guess is chosen so that the initial ervor
at cach point is 1. Figure 1 gives the log of the error after one iteration
at each point of a grid with h = 1/20. For this problem, as expected,
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Figure 1: Log of error after first iteration for problem (8)

we geot an error of appreximately 10~ after the first iteration. The
FGS method shows almost no error reduction exeept at the right-most
point where it is 1074, A similar reduction propagates across the grid
at subsequent iterations, requiring a number of iterations of the order
of the number of grid-points to reach the left-hand boundary and thus
reduce the L., norm significantly. This s illustrated in Table 1.

Method

1/h [FGS TBGS | 568
20 20 2 2

160 ; 101 3 3

Table 1: Problem (8}, Number of iterations to achieve error 107°

p(z) having one or more zeros

Fhere are two interesting cases here. The first is when p(0) > 0,p(1) <
0 and p'(2) < 0in [0,1). Iz this case the zero z* of p(x) corresponrds
to a sink with the characteristic flow towards z*. For this case, Illia

-
/
A

and Kellogg [2], used a method which swept to the right while p; > 0
and then sweeps to the left while p; < 0. The second interesting case
is when p{0} < 0,p(1) > 0 and p'{x) > 0in {0,1]. In this case the
zero =* of p(z) corresponds to a source and the characteristic flow is
directed outward {rom z*, In {2}, a special block Gauss-Seidel method
is proposed, in which the first blockis a2 x 2 hlock and the others ara
1 % 1. In both the sink and source cases, it is shown in [2] that the
special scheme proposed safisfies a result similar to that for the case
where p(z) is of one sign. Both of these special schemes correspond
to a reardering of the mesh-points and it is in this context that it is
generalized in [2] to the two-dimensional case. It should be noted that
neither ¥GS nor BGS satisfies a monotenicity or rapid convergence
result, The SGS, on the other hand, performs well in both cases. This
is illustrated in Figure 2 and Table 2 for the sink problem:

—eu'{z) - z/20/(z) + 3/2u(z) = -1, O<z <,
u{0} = -1, wu(l)=1.

We can prove a theorem similar to Theorem 1, for this case also.
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Figure 2: Log of error after first ieration for problem (9)

Method

1/h | FGS { BGS | SGS
20 10 10 2

106 50 50 3

Table 2: Problem {8), Number of iterations to achieve error 10-%

THeEOREM 2 Let (1) be a sink problem, with the zero, #*, of p{z)

in the interval (z1,21.1) and hence, p 2 p{z;) > ph, Vi, Then, for the
SGS method, if ¢ satisfies ¢ < min(.8ph, uh%/2), the Ly, norm of the
error in iteration m + 1 satisfies:

m 4e
Hﬁ“ﬂ<m§&ﬂh

Proor: Consider first the forward sweep. The new error e™+1/2 ig
given by:
(F = D 1 L)e™ /2 o piyem i g
where the entries of D"1L and D=1V are given by {2) and
&= (ﬁle‘znv 32@'3": XN ,Hu—}e::y D)T'

Divide the system into two parts

By 0 et e+

Bo B_ M ¥ =1 e
where By is an { x{ matrix and H.. isan {(n—1{) x (n —!) matrix. Thea
Byl = et (10)
B_emtii & — Boe 124 5 (11}
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where ngi‘“n = (uaH_ie;nM/i,O,...,U)T. The analysis for (18)

follows as in [2] and Theorem 1, except p is replaced by ph. Thus for
€ < .Bph,

2¢

;;};5316"‘”' (12)

For (11}, writing B_ = / — D_L_ and letting D5 and Lo be as in
Theorem I we have

st <

&
-1 < [tp7t = e &1
D2 L4} € 1105 Lol = 5 <
Hence
(7~ DMLy < /(1= DI L) € 1/(1 — 105 Loll)
b Y (13)
§+4p
Now, using (12} and € < uh®/2,
- 8 4 oy m 8 w142
= ¢ .
O B el 4 gk AT [Pret] + reah !
o~ 26+ ipl-t‘li m ™m
< e < lie y 14
| € g P e < e (1)
= §+ |pl'E o
[ RN & L L X < EHe™H 15
%eli a8 + |P:‘E + r,-hle“ﬂi = %lé’, ﬂ ( )
Thus combining (13}, (14), (15) we get
[le 4%} < 2fie™|; . (16)

Combining (12) and (16) with similar estimates for the backward sweep
gives
Ao

m+1
el < =55

fle™l]. o
Tigure 3 and Table 3 illustrate the results for a source problem:
—ew(z) + zf2u'(z) +u(z) =0, O<z <],
w(0) = -1, u(l)=1.

In sink and source cases it is clear that for FGS and BGS the error

(17

Bretsdddty . S XXXXXXXX
+ FGS
— X BGS
s 05GS
§ ¥
T [ BEBBBBEBSEEbvbbbde
I

Figure 3: Log of error after first iteration for problem (17)

Method
1/h | BGS | BGS | 5GS
20 11 11 2
100 ; -~ 52 52 3

Table 3: Problem (17), Number of iterations to achieve error 10-%

is reduced rapidly, where we are solving in the characteristic direction,
whereas we reduce the error sigaificantly at only one point when we are
solving in the opposite direction. SGS achieves its effect by reducing
the error significantly at each point in either the forward or backward
sweep.

=

Two Dimensional Problems

We consider the model two-dimensional convection-diffusion problem
on the unit square {1:

—ehut ple, yius + gz, )uy + iz, vu = flz,v), {z,9) € 0 (18}
u(z,y} =10, (z,y)€ &0

We consider five-point upwinded difference schemes for this problem.
In {2], it is shown that, if the mesh-points are re-ordered to satisfy
an admissibility condition, which is related to the direction of fiow at
each point, then rapid convergence of the type discussed in the previous
section can be achieved by a point Gauss-Seidel method. Asymptotic
error results {c.I. [5, Theorem 3.15, p195]) suggest that black methods
should achieve better rates of convergence. If the fiow is complex, how-
ever, & re-ordering to satisfy the admissibility condition is net possible
for a block (line} Gauss-Seidel method. This is because the flow at
each point of a line is not necessarily in the same direction. In prac-
tice as is shown in Table 4, the forward {backward) line Gauss-Seidel
FLGS (BLGS) also show the disadvantages of FGS (BGS). We pro-
pose a Symmetric Line Gauss-Seidel (SLGS) method which is defined
analogously to SGS. The matrix of the difference scheme, 4, has the
form:

Dy Uy © 0
Lsa Dy U, 0
0 0 L. D,

where D; is a square tri-diagonal matrix of order n, the number of
mesh points on each line in the z direction, and L; and U, are diagonal
matrices of order n. Consider the splitting of A into 2 block tri-diagonal
I} = diag (D1, Dq,..., D,), a block lawer triangular [, and az block
upper triangular U matrix, A = D — L~ I/. The SLGS is then defined
ag 3

Mpu*+ 2 = Nowk 4 f, where My = D ~ LNy =1,
MyuF+t = Npuk+1/2 4 swhere Mi=D-UNg=L
In practice, under certain restrictions on the coefficients related to sta-

bitity of the difference scheme, this method achieves rapid convergence
results of the type seen for SGS. This is Hlustrated in Table 4.

Method

Problem | Coefficients 1/h | FLGS | BLGS ] 5LGS
1 pz)=3z—y—1 20 2 20 2
gz} =1 40 2 40 2

2 Ipx)=dz-y-1 | 20] 23 73 1
gzl =4+ 2y—3 40 40 40 5

3 | Hzy=38z-y—1 | 20] 13 13 3
glz)=—-z—-3y-2| 4 26 26 3

Table 4: Number of iterations to achieve errer 1075 for problem (18)
with r(z) = .5 and f(z) = 0.

References

(1] E.P.Doolan, J.J.H.Miller, W.H.A. Schilders, “Uniform Numerical
Methods for Problems with Initial and Boundary Layers”, Boole
Press, Dublin, (1980)

(2] H.Han, V.P.I¥%in, R.B.Kellogg, W.Yuan, “Flow Directed Iteration
for Convection Dominated Flow”, to appear in Proceedings of
BAIL V (1988)

(3] R.B.Kellogg, A.Tsan, “Analysis of some Finite Difference Approx-
imations for a Singular Perturbation Problem without Turning
points”, Math. Comp., 32, pp 1025-1039 (1978)

[4] W.Niethammer, “Relaxation bei Komplexen Matrizen”, Math.
Zeit., 86, pp 33-40 (1964)

[5] R.S.Varga, “Matrix Iterative Analysis®, Prentice-Hall, Englewood
Cliffs, NJ, 1962





