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SUFFICIENT CONDITIONS FOR THE UNIFORM CONVERGENCE OF A
DIFFERENCE SCHEME FOR A SINGULARLY PERTURBED
TURNING POINT PROBLEM*

PAUL A. FARRELLY

Abstract. A number of resulls exist in the literature for singularly perturbed differential equations
without turning points. In particular a number of difference schemes have been proposed that satisfy a
stronger than normal convergence criteria known as uniform convesgence. This guarantees that the schemes
model the boundary layers well. We wish to examine whether these schemes will also be uniformiy convergent,
if the equation has turaing points. To this end we derive sufficient cenditions for uniform convergence which
are satisfied not only by these schemes but by 2 more general class of schemes. We show that the rate of
convergence is determined by a characteristic parameter of the problem which may be less than one. We
confirm these theoretical results by numerical calculations.
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1. Intreduction. We shall consider the following singufarly perturbed two-point
boundary value problem having an isolated turning-point at x = 0

{1.1a} Lo, = cu’(x)+ a{x)ul(x)~ b(x)u.(x)=f(x), ~]=x=1,
{1.1b} u {—1y=A, (1) =B,

where a, b, f are in C*[—1,1], 0<& =¢,, and

(1.2a) a(0}=0, a'(0) >0,

In order that the solution of (1.1} satisfy a maximum principle, we require that
{1.2b) b(x)=0, B{(0) > 0.

We also impose the following restriction which ensures that there are no other turning-
points in the interval [—1, 1]

(1.2¢) la(x)lzla’(0)/2, -1=xs=1

Under conditions (1.2a)-(1.2¢) the solution of (1.1) has an internal layer at x = 0. The
smoothness of the solution is determined by the characteristic parameter A

(1.3) A =xb{x)/a(x)|s=c

We shall restrict our attention to cases where A is not an integer. We illustrate the
solution, for a problem with a{x)=x, b(x)=2A, and f(x)=0in Fig. 1 and Fig. 2.
Without loss of generality, we shall assume in the remainder of this paper that A=B=0.

Singuiar perturbation problems have been widely used in the literature as model
equations for convection-diffusion equations

Aulx, y)+ R-=ulx, y) = fix, »),
dx
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where the Reynolds number R may be large. Many methods have been proposed for
their solution. We are concerned here with difference schemes that satisfy the unusually
strong convergence criteria known as unriform convergence, that is,

Jul ~ )| = Ch,
where 1] is the solution of the difference scheme, p >0 and C is independent of both
h and e. Previcus works have concentrated on the nonturning point case, where
alx)za>0.
This exhibits a boundary layer at x = —1. Uniform convergence is sufficient to guarantee
that the problem can be solved accurately on a coarse mesh and that the boundary
layer will be resolved accurately. It is well known that classical methods do not satisfy

this criteria. For example, the centered difference method is unstable, unless
a{x;)h/2e <1, and thus a fine mesh spacing proportional to « is required (Fig. 3).'

! Figures 3, 4, and 5 are for a problem on [0, 17 with boundary layer at x =0 {from {20, pp. 220-221]).
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On the other hand, employing an upwinded scheme, which uses a directed difference
for approximating the first derivative, is stable but modefs the boundary layer badly
{Fig. 4). In fact, such schemes are good for approximating the behaviour of the solution
outside the boundary laver but, as the uniform mesh spacing is decreased and thus
points fall in the boundary layer region for the first time, the error, measured by the
discrete [, norm on the mesh points, initially increases. When the mesh spacing is
decreased sufficiently the error eventnally begins to decline again. To solve these
problems a class of schemes known as exponentially fitted schemes was proposed.
These satisfy the above criteria of uniform convergence. The results for one of these
schemes, known as I’in-Allen-Southwell fitting, are shown in Fig. 5. This scheme is
given by

em{a(xh/2e)D, D_ul +al{x. ) Dou’ — b{x)ul = f(x;) where 7(z)= z coth {z}.

A set of sufficient conditions for uniform convergence, which classify the manner in
which schemes must be fitted, is given in Farrell [10], {11].
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It is desirable to know if the same fitted methods are also accurate for more
general problems. Miller {16] investigated the self-adjoint problem, obtained by setting
a(x)=01in (1.1). He showed that, in this case, a different type of fitting is required.
Berger, Han, and Kellogg [4], [5] considered the turning-point case with

a{0)y =0, a'{0) <0,

This exhibits boundary layers at both ends and the same fitted methods, interpreted
correctly, can be shown to be uniformly convergent for this case. The turning-point
problem dealt with in this paper is essentially different, in that it does not have a
boundary layer of exponential type but rather an internal laver of cusp type, the
boundary layer function of which is the Weber parabolic cylinder function. The analysis
is therefore considerably more complex.

Four results exist, in the literature, for specific fitted schemes. This problem has
been considered previously by Emellanov [8] who showed that the I'in-Allen-
Southwell scheme was uniformly convergent of order A™**/ for 0 < A < 1. We employ
a method of proof, which involves asymptotic expansions, similar te the approach
used there, Farrell [9] showed that a namber of schemes are uniformly convergent for
the problem (1.1) with a(x)}=ax, where 4 is a constant, and b(x)=A. Niijima [17]
proved that the complete exponential fitting scheme was uniformly convergent, for
problem (1.1), using an argument involving discrete Green's functions. Berger, Han,
and Keilogg F4], [5], have proved analytic results for the bounds on the derivatives
of this problem. These are valid for the case where A is an integer in addition to the
nonintegral case considered here. Using these bounds they show that a modified version
of El-Mistakawy and Werle’s scheme is uniformly convergent of order »™"*". This
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FiG. 4. Lipwinded scheme.

proof invoived the use of a comparison equation with piecewise constant coeflicients.
Abrahamsson [11, [2] produced extensive analytic results on the nature of the solution
of this and other turning point probiems and in addition proved results concerning
the nonuniform covergence of difference schemes for these problems.

In this paper, we generalise the results of [9]. The suflicient conditions for uniform
convergence derived are satisfied, not only by fitted schemes, but also by a large class
of schemes of upwinded type. To be precise, we shail consider a class of difference
schemes of the form

(1.4a) Liul=eiD.D ul +alD,uf-blul =11,
(1.4b) u =0, uly =0,

where = in (1.4a) indicates taking £, and D, if al =0, and &7 and D_ if a?=0. We
shall assume additionally that

(1.5} e =0, a'=wma(x), bi=pbix).

We shall also find it convenient in the convergence proofs io rewrite (1.4} in central
difference form

(1.6) Liuf=e!D.D_ul+al—bjui=f7,
where &)= e} and 7 are related by
(L.7) el=glxhal/2.

We shall impose conditions on af, b}, 7, and &7 and show that these are sufficient
for uniform convergence of the solution of {1.4), (1.5) to the solution of (1.1), (1.2).
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In § 2 we state the sufficient conditions and discuss their significance. Section 3
contains results concerning the exact solution of (1.1}, (1.2) including an asymptotic
expansion and bounds on the solution and its derivatives. The proof of the sufficient
conditions is given in § 4. Numerical computations are presented in § 5 which confirm
our results. The Appendix contains three technical lemmas, in which we prove bounds
required in § 4.

2. Sufficient conditions for uniform convergence. We shall first state the main
theorem of the paper which gives the sufficient conditions for uniform convergence of
the scheme {1.4). We will also discuss the significance of these conditions and list
some of the difference schemes which satisfy them. A proof of this theorem is deferred
until § 4.

TreoREM 2.1 (Uniform convergence). Ler u, be the solution of the isolated simple
turning point problem

Lo, = eul{x)+a(x)u.(x)=b{x)u, =f(x}, ~1<x<1,
ur:(—i):{)a ur—‘(l):oa
where the coefficients satisfy (1.2) and (1.3}, and let u® be the solution of

Liuf=e;D.D ul+alD.oul—blul =f} ~-N<i<N,

iy

L F
Ul =0, Un =0,

where the coefficients e, al = ca(x;), bl = Bb(x;) and {1 are bounded and are such that
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the scheme is uniformly stable, e.g.,

(N e, >0, a;zZa>0, BZp>0,
(1) |laf —a(x)|= Ch,
(11D [bf — b{x,)|= Ch,
(1v) 1= fix)|= Ch,
(V) &7 — | = Chla(x)|+ h);
then for h=h,, €= g,
[, (%)~ ul|= CR™RD) -1sx=1

where C is independent of h and &.

Remarks on the conditions (1)-{V). Condition {1} is a condition for the matrix of
the scheme to be of positive type and hence for the scheme to be uniformliy stable.
Note that the conditions are analogous to those for the stability of the differential
gquation.

Conditions (I1)-(1V} are “consistency” type conditions which state that the scheme
should not vary much from the form of the differential equation, i.e., the coefficients
should only be O(k) perturbations of the coefficients of the differential equation.

Condition (V) effectively states that & must be an order h* approximation to ¢
near the turning point but need only be order h away from it. Alternatively we may
say that a better order of approximation is required in the region where the internal
layer is situated.

The restriction of the order of convergence to min{A, 1) reflects the fact that the
reduced difference scheme only approximates the reduced differential equation with
order A for A < 1. This is apparent if we consider an equation with

a(x}=x, b(x)=A [flx)=0
u(—D=u{l)=1
which has a reduced solution of |x|".

We note that unlike the nonturning point case discussed in Farrell {107, {113, no
exponential fitting is required in this case for uniform convergence. This reflects the
fact that the solution of the turning-point problem does not exhibit boundary layers
and is thus smoother than the solution of the nonturning point problem.

It is easily seen that a wide range of schemes satisfy these conditions. In particular,
we can show that II'in-Allen-Southwell fitting
er(a(x)h/26) D, D ui +a{x;) Doul — b(x)ul = f{x,),

where 7(z) = z coth (z), satisfies the conditions. Using r(z) =c(2z})+zand o{z}— 1=z
we can write the scheme in the form (1.4) where

F=ollalx)ib/2e), al=a(x), bi=b(x), fi=f(x)
and hence
led ~1|=elof — = slalx)h/e = hla(x)].
Similarly the generalizations in Farrell [11], which use o(a{3)h/2e},0=x,~Ch=v, =
x;+ Ch, also satisfy these conditions. Similar but somewhat longer arguments show

that complete exponential fitting (Shishkin and Titov {18], Carroll [6], Carroll and
Miller [71) satisfies them. A more interesting result is that the simple upwinded scheme

ef=e, al=a(x), bl=b(x), fi=f(x)
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also satisfies them trivially. Similarly two other special schemes, from the literature,
for convection-diffusion problems also satisfy them. That of Sarmarskii {Gushkin and
Shchennikov [12], Kellogg and Tsan [151), is given by {1.4) with

£
(I+alx)|h/2e)

.
£

af’ e a{xi)> bfl @ b(xi)a f? *.f(xi)-

We can see that it satisfies the sufficient conditions using

1 e z
(1+z)  (i+vz) =

The schemes, proposed by Hemker [13], [14], are given by (1.4) with
ei=¢ +%(V:' =1 alx;)h, a? = a{x), b'? =b(x), ? = f{x)
where |v;|= 1 and

-1 alx)h 3
< < .
1+ 2 1—y

The result folllows by observing that

) .
(n:1)=2, sf‘>s+( -E)“(xr)h“

a{x;)h
The modification of the Abrahamsson-Keller-Kreiss box scheme proposed by

Abrahamsson [2], which we shall refer to as Abrahamsson’s scheme 1, is defined as
follows:

if a;>0,
ko I h h
eD D_ui +a; 2Dl —3bio(u] + ul) = oo ¥:>0,
eD. D _ul+aD, ul—bul=f, ¥ =0,
if a; =40,
) B _
eD._D_ui—bu; ““f;:
if a; <0,

h o1 h h ~
eD D _ui'ta,_,,D u—3 iwl/:}(ui +uig) :ﬂwa/za v =0,
eD,D_u+aD u"—bul =, v, =0,

where, di12=a(X.,,) etc.,

- i . f
Vi “*"““{““H“%““biﬂ/z and =Tz —2hi .

:;1“5‘ I 2

This was shown in [2] to be O(h*+ e¢h) outside the boundary layer. It can easily be
shown to satisfy the sufficient conditions, since

gf = £, a? = iy T hbi:1f2/2 or &, b? = Bigiya 08 by
All these latter schemes are not uniformly convergent for the nonturning point problem.

3. Amalytic resulis. In this section we will present some analytic results including
an order ¢ asymptotic expansion and bounds on the solution of the equation, together
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with its derivatives. We shall first introduce the following notation. Expand a(x;), b(x;)
in Taylor expansion about zero; then

a(x;)=x{as+ a,x; + 5235?)5 b(x;)=by+ bx,+ Bzx?,

. _m{[a(x)} - M}ﬁ[am}
e T ax L x Jhe PT2a | x

bo=h(0), by=b'(0), by=b"({)/2, 0={ n=x.

where

- ax)
mx

Ay

1
x=mn

Let uy(x) be the solution of the reduced equation
Loug(x) = a(x)ug(x) = b(x}us(x) = flx),  0<|x|<1,
u(—1) =0, up(1) = 0.

In addition, we define a polynomial approximation, to uy{x}, in the turning point
region by

yolx) = do+ d,x + dox?

where
=bods = fo,
—bydot+ (ay~bo)d, = f,
—bydy+(a;— b)) d, +{2a,~ bo)d, = f,.

Then, letting w{x) be the solution of the homogeneous reduced equation, for x> 0 and

g{x) = f(x)— Loye(x),
we define

i Jaara [ 208
o wis)a(s)

We can define d similarly, using a solution to the homogeneous reduced equation fo
x <., In addition, it is clear that

wix}=exp l:wf-zg—s—) ds}

X

where T{s)==sb{}s/als}. Thus

w(x)xexp[:*“Jq —wds} exp [J If:(?"@ds]

=x""Ym(x} = x"m{x),

where

mix)=exp [mJﬂ wds}.

x 5

Using this notation the following asymptotic expansion for the solution of (1.1), (1.2)
was derived in Emel’ianov [8] and appeared also in Farrell [11].
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Taeorem 3.1, Ifu,(x} is the solution of (1.1) and 4.(x) is given by

(3.1}
) | dm(0)(x* + THO)x* ) x20
_ NV (2+1/2) ] ; s
ui‘(x) u()(x) 3 U(){é’)TF 'U;(g) { dm{O)((—x)’\+T'(0)(WX}A“), xéo’
where d, 4, and m(0) are constants independent of &, { = x/e"?, T(s)=sb{s)/a(s), and
Vo, Uy satisfy

{3.2) vo{) + Lagva(d) — borol L) = fo,
(3.3) ei () + Lagei () — bovy (8 = {fi + {{byvs— ayvad),
then

u () = . (x)| = Ce, ~1%x=1.

In addition to this asymptotic expansion we shall also require bounds on the
solution and its derivatives.

Emel’'ianov [8] has shown that the following bounds hold for the solution of the
reduced equation uy{x),

" )= i)

In addition we have the foliowing bounds for the derivatives of the solution w, (x)
of (1.1) and for the derivatives of the first and second internal layer functions v(x)
and v,(x). These bounds first appeared in Berger et al. [4], {5] and Emel'ianov [8],
respectively.

The following theorems which give bounds on the solution u.{x) of {1.1) and its
derivatives are proved in Berger et al. [4], [5]. The proof involves examining the
solution near the turning point x = 0, transforming the equation to that for the parabolic
cylinder functions, and using the properties of these functions given in Abramowitz
and Stegun [33.

We shall require the following conditions on the coefficients of the equation (1.1}

a(xye CH~1,1],  b(x), flx)e C'[~1,1],

(3.5) 0<e=l,
b(x})=b>0, —1=x=1.

Further fet B;, 8, be fixed positive constants

(3.6) B <1<p,.

We are now in a position to state the first theorem.

Taueorem 3.2, Assume (1.2), (1.3}, (3.5), and (3.6) and, in addition, that 3, < X <
B., a{x), b{x), f(x)e C*[—1, 1] where k 2 2. Then there is a constant C, depending only
on

Stky="{halz, bl 1A b Br. B LAL IBL Hali, [Bfx, [ 1, k),
where ||+ ||, is the norm in C™[—1,1], such that u.(x), the solution of (1.1} satisfies
(3.7) wx) = Clx|+e"V T Tix e n),  i=1, kF],

for ~1=x =1, where
6

IHx, s,B}=j sTETIZ gy

x"ke
Proof. The proof appears in Berger et al. [5, Thm. 2.7, p. 469].
The estimate {3.7) does not give a tight bound for the higher derivatives, when
A>1, since I{x, e \) increases with A. The following theorem gives an improved
estimate for this case.
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Turorem 3.3, Let A =m+ 3, where m is a positive integer and B; <A <f,. In
addition let (1.2), (3.5), and (3.6} hold and a(x), b(x), f(x)e C™"*[~1, 1] where k= 2.
Then there exists a constant C, depending only on S(m - k), such that u.(x), the solution
of (1.1} satisfies

wlx)=C, i=1,0,m,
W)= Cllx|+eVH  I(x, e, 8), i=m+1,--- m+k+1,
Jor ~1=x=1.
Proof. The proof appears in Berger et al. [5, Thm. 2.8, p. 469].

These theorems are valid whether A is an integer or not. For A not an integer, we
may simplify the results by noting that for 0<< g <1

(3.8)

I(x, g, 'B) x-i—-fTB-{é(l—B)/Qm(xZ_’_ E)(I'MB}JQ}é_l__z_‘_g_{6(1—6)/2+2(1—1’3)/2}§ C(B)

Hence we have the following, by combining Theorems 3.2 and 3.3,

CororrLary 3.4. Assume (1.2), (3.5), (3.6) and in addition A >0 not an integer,
a(x), b(x), fix)e C*[—1, 1] where k=2. Then there is a constant C, depending only on
S{k) and A, such that u (x), the solution of (1.1), (6.2}, satisfies

(3.9} u' ()= C[1+(x[+e"H* ], i=1,- -+, k+1,

Jor - 1=2x=1.

We remark that this result could be proved directly. The analysis in this case
would be similar but less complicated.

Finally we have the following estimates for the first and second boundary layer
functions, v,(x) and v,{x), and their derivatives. These appeared in Emelianov [31.
The former estimate also appears as an intermediate result in the proof of Theorem 3.2.

Taeorem 3.5. Let vy(x) and v,(x) be the first and second boundary layer functions
of the equations (1.1), (6.2); then under the conditions of Corellary 3.4 we have

(3.10) lod?(x)| = C[1+ (x| + £V 71, i=0,1,2,
3.1 w0l = CTE+(x]+ 20, i=0,1,2.

In the next section we shall make extensive use of these estimates, together with
the asymptotic expansion, in order to obtain the error estimates for difference schemes.

4. Proof of the sufficient conditions. The proof consists of obtaining two separate
estimates for the truncation error, the first using the traditional approach but retaining
powers of e explicitly, the second using the approximation #,(x)} given in § 3. Using
uniform stability we thus get two bounds for the error, which we then combine to give
the uniform error estimate.

We shall assume throughout that e < g, {given) and that the scheme is uniformly
stable. A sufficient condition for this written in terms of «; and §, is that

(4.1) erz0, B=B>0, a;=a>0.

It follows from this that a0 for i#0 and b} >0. Let M=(my)_nzi=n be the
matrix of the scheme. If i >0, then a” > 0, the ofi-diagonal eniries of M are given by
ef/W =0, £/ +al/hz0 and the row sum of row i is —b" =0 and a similar result
holds for i< 0. For i =0, the off-diagonal entries are £7/h"= 0 and the row sum is
—b} < 0. Further, it is clear that the graph of the matrix is connected, since for i <0
all nonzero elements can be connected to m_,_n and for i >0 to my n. The matrix
is thus irreducibly diagonally dominant, hence the negative of an M-matrix and
consequently inverse negative (Varga [19]).
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In order to establish stability, we define the comparison function ¢, = {x; —4)/2.
Now

Li¢;=el+alx —bl[xI—-4}/2
=g, +xa, +bi—bl[xI—2]/2
Zxal+ bt = xoa(x)+ Bb(x)
z xea(x)+ Bb{x)Zzmin{g, B)ixa(x}+b(x;)]=min (g, Blu>0,

where g depends only on a{x) and b(x}, since b(0)>0 and xa{x)>0 for x # () and
a(x) and b(x} continuous. Uniform stability follows by applying the maximum prin-
ciple to

wi=2ul + CLfTed,

where C, is chosen sufficiently large.
- We shall also reguire the following estimates, which are a direct consequence of
condition (V)

o7 = 1= Cple " Ha(x)l+p) = Cpxl/ e +p),

(4.2)

Ea’?mfléCp(gylfz‘a(xf)‘+p)é C,D(|xfE/E}/2+p),
(4.3) la(x) (o~ 1)]= Ch,
where p = h/ "%

Lemma 4.1 (Classical consistency). Let conditions (1)-(V) of Theorem 2.1 hold.
Then the truncation ervor of the scheme (1.5), (1.6) applied to (1.1}, (1.2} is

h_irh h AS2 h3 hz I
TfﬂiL(s(ue(xj)“u,‘)l§C€ - _5+——3f—2—+72- ..{..Ch
£ £ £

Proof.
e [L2u ()~ Lo Ce |+ LT = )

=[e}(Dy D u, ~ul(x)|+ (] — &) ul(x)]+]al (Dou, — ul(x))|
+{al = alx N ul(x)]+ (0] = b)) u x|+ 17 = F(x)]

s efh?u (D lal P u DD+ ha(x) i+ P ul(x)] + Chiul(x,)|+ Ch.

We require a better estimate for a{x;)u.{x;) than that given by (3.9). By differentiating
(1.1) we may show that

la(x ()= Cleu® (x) +ui(x) +u (x) + C).
Thus we have, using (3.9),
)z Cle + MR DI+ Cleh+ D)™ (DI Ch?lul{x)|+ Ch

A & h
éC&AH(*‘;‘F?E*F?E)*”Ch i

u;(x,}|+Ch

Since we have assumed the scheme is uniformly stable, classical convergence is
an immediate consequence, as is uniform convergence for the special case A > 4.
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TueoreM 4.2 (Classical convergence theorem). If the scheme (1.5), (1.6} is uni-
Jormly stable and in addition satisfies (1)-(V) then

Rkt
iu?——ug(xi)|éCs’\/2<;“5+~;~375+;;7§)+Ch.

We shall now use the asympiotic expansion of § 3 to derive a further estimate of
the error. We shall consider only the case x =0, since x <0 is analogous.

TueorEm 4.3 (Nonclassical convergence). If ul is the solution of a difference
scheme (1.4) satisfving the conditions (1)-(V), u.(x) is the solution of (1.1), (1.2} and
h=h,, e ey then

u (x)—ufls C(h™" M rg),  —1=xs1

Proof. We restrict ourselves first to the region x = h, the case x = 0 will be dealt

with later. Applying L! to @.(x;) —u!, where 7, is the asymptotic expansion of § 3 and

u? is the solution of {1.5), (1.6), we obtain

L?(ﬁs(xi) . ”:1) = Lgﬁg(xs) “f? = L? e (%) = Louo{x; )+ f(x;) ““f?
and thus

LR, (x) - )| S L2 () = Lowelx) + |7 = f(x)).
Since the latter term is bound by Ch, it therefore remains to bound
T4 = LI (x) — Loug(x,).
Writing #; for .(x;)
Th= "D .D_ii, + a" Dyt — (b = b(x )i, — a(x)ub(x;) — b(x3 {8 — ue(x,)).

Now substituting explicitly for #;, using (3.1), expanding a{x,) and b{x,;) in Tayltor
expansions around 0, using the notation of § 3, and regrouping

Th =" DD Tug(x) — dm(0)(x} + T(0x} "1+ 062D, D [volx i+ Po(x)]
+ x, (o + X, Vel () — dm(0){x} + T'(0)x} 1]
=~ x{@o+ xd yub(x) — (b] = b(x;))i;
i+ x(ag+ x,a, + x20) e Dyvo(x,) + X {do + drx:) e V2 Dy, (x;)
byt byx; + box B[ e P v(x;) — dm(0)x7]
byt Byx [P 2 (x) — dm(0) T'(0)x} 7],
Recall that, if { =x/&*? and p = h/ &, then

d L d :
a vol{) = 8”"3}; volx/ '), Dfvy(8) = e Divg(x/e"?),

d2 d3 /2 4 4 X X 1/2

i v {) = e u(x/e'?), DD u({) = eDiDuy(x/e"").

We shall henceforth write vj({) for (d/di)v.{¢) and similarly for Di, etc.

Now writing the expansions in terms of £, collecting terms of equal order in ¢
and using the relations
dxA nr dx)ﬁ»}

A
box® = agx e box™ 7 = agx

bove( ) = vi({) + faguill), bov,({) = v{({)+ {agvi({) + §2a,_v(§(§) —byLve(L),

ATi
= dpX 3




SINGULARLY PERTURBED TURNING POINT PROBLEM 631

of which the latter two follow from the defining relations for v, and v, we may rewrite
this as

i1
T? - Z 5
e
where
hy o~ d d
8= (bix;)—b; Vit + xiage; DyY(x) ““"a; Y(x)

+x2d, (o — 1 ub(x)+ e 2agli(a - 1)01(L),
S, =D, D_Y(x},
Sy= "~ Dl agvb( i)+ e andva(8)],
S, = x7d e Doug{x,) — ub{x,)),
Ss = e*ag e (Dol £) = 0541,
Ss= & aglio (Dov (5~ 0ilED),s
8= (o = 1)5(L),
Sy = &L of(D. D_vo( &)~ v5(EN],
So= e (@) = Doi(4) + o i (D Dovi(L) — vl
Sio= " a, el Dovo(£) = i 4)) = dm(0) (@ L TaDol T = by 7™
+a T ],
Spu = e L d, Dyl mof ) — dm(0)22) = E1h(vol ) — dm(0) 1)
+ e Do(0,(£) = dm(0) T(O) ) = Liby(mn(£) — dm(0) THO) ),
and
Y{(x) = ug(x) — dm(0)x* — dm(0) T(0x*
It can be shown that the S; satisfy the following bounds:
S;=Ch, i=1,4 69,
S=Clhtey, =211,
§,= Ch™PAY 0 i=3.5,7, 8, 10.
We shall defer the proof of these bounds to Lemma A.1 in the Appendix. Now
combining the bounds on S, to §;;, and (IV), for x; = h, we have
{4.4) LM () —ul)| = T+ b flx)| = _i S+ Ch= C{h™ M 4 g),
For x,=—h the same bound is also valid. Thus there remains only the case x;=0.
Using (3.4) we can see that a{0}uy(0) =0 and hence
Lotto(0) = —byus{ ).
Thus, using f(0) = Loto(0) = ~byue(0) and (1V),
|L3,(0) — ul)| = [LAE.(0) — F(O)|+ |1 —£(0)

(4.5) " |
= 'Lr:‘ U, (0) + b()u()(o}i + Ch
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Now, at £, =0, the defining equations for v, and v, become
ol = by (0y=0,  i=0,1.

Hence, using {3.1) and rearranging the terms,

(46) L1, (0)+ buuf)]= 3 [T

We can show that the following bounds hold for these terms
T, =e4D.D_Y{x,) = Cle+h?),
T, = af Dot (xp) = Ch™"Y,
Ty = (bg = be)il, (xo} = Ch,
Ty = "o~ 1) DD vy L) = CR™,
Ts=&""*(D.D_vy{fo) ~ v5({o)) = Ch,
To= oD Dovy (L) = vi (L)) + & og = 1) DL D_vi(Lo) = CR™™ Y

and Y(x) is a smooth function as before. We will defer the proof of these bounds to
Lemma A.3. By (4.5}, (4.6), and the boundson T;, i=1, 6,

(4.7) LG (0)— ug) s C(R™" M) 4 g),

We may now use these resulis to produce a new error estimate.
Since u” = 1y =0 and since from a consideration of the asymptotic expansion
similar to Theorem 3.1

(1) = Ce,
we have
G, (x)—ull=Ce,  i=-N,N.
By (4.1), a scheme of the form (1.4) is stable. Thus, using (4.4) and (4.7},

[, (x)~ul|= C_Nr‘llaju_gN LM () = uD+ Ce £ CR™™ D+ g),

Also, by Theorem 3.1,
i, ()~ (X)) = Ce
and hence
fu(x) — ulls C(R™™ 4+ ¢).

This concludes the proof of Theorem 4.3, I
Finally by combining Theorem 4.3 with Therorem 4.2 we can show the following
uniform convergence result,
Proof of Theorem 2.1. Consider the case A > 1. Then applying Theorem 4.2 for
h=¢g, we obtain
3 2

, W h
(4.8) |uf{xi)-u£’|éc{mg;;+w+h}<:(h3f2+h):§ch
& &

and, by Theorem 4.3 for h = &,
(4.9} lu, (x)—ull= C(h+e)=Ch
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Similarly for 0<C A <1, applying Theorem 4.2 for h* =e¢,
uy () — = U7+ e 92 e 4 )
< ORIy AN L AN/

and A2~ A +2>A%+1>24 and thus

(4.10) u, (x) =~ uy| = Ch™
Finally, if 0<<A <1 and h* & ¢ we have by Theorem 4.3,
{4.11) |u, (x) ~uf|= C(h* +e)= Ch™.

Theorem 2.1 now follows by combining (4.8), (4.9), (4.10), and (4.11). [I

5. Numerical results. In this section we present numerical results for a number
of schemes which satisfy the sufficient conditions of Theorem 2.1 and also for some
schemes which do not. The graphs each show the results on meshes of width h=1and
L and also an accurate approximation to the exact solution obtained on a fine mesh
(h=1/1024), Except for Fig. 8, which is for e =0. 01 and A = 1.23, they are all for the
following probtem {(from [5, p. 487]), which has a turning point at x =3,

au'(x)+ ((x —0.5)/1 +0.3121(x —0.5) i (x) = (1+0.2764(x — 0.3))u(x) = f{x),
u(0) =1.2062, u(1)=2.2003,

with & = 0.00001 and A = 0.25. The right-hand side f{x) is chosen, so that the solution
and its derivatives, exhibit the behaviour given in Corollary 3.4. Figures 6, 7, and 8
show the resuits of the IPin-Allen-Southwell scheme, Abrahamsson’s scheme 1 [21,

3

0.0 0.5 1.0

FG, 6. IT'in- Allen-Southwell scheme.




634 P. A. FARRELL

0.0 0.5 1.0

Fia, 7. Abrahamsson scheme.

described in § 2, and Complete Exponential Fitting, respectively. All of these satisfy
the suflicient conditions. We do not show graphical results for any of the other schemes
satisfying the sufficient conditions, since they are virtually indistinguishable from these,
Figures 9 and 10 illustrate the solution for centered differences and for the following
scheme proposed by Abrahamsson [2] for nonlinear problems, which we shall refer
to as Abrahamsson’s scheme 2:

h
e(l +H;) D D_ui+a(x;)Doul = b(x,3ul = f{x,),
&

where

i
o

wer max la(x)|.

H

Neither of these schemes satisfies the conditions of Theorem 2.1. It is easily seen that
these do not solve the problem accurately. Numerical and graphical results for this
test problem, together with many more general problems may be found in Farrell [11].

To determine more accurately whether a scheme is in practice uniformiy conver-
gent, we calculate an experimental rate of uniform convergence p as follows:

p=mean{ln (e”")~In (e")]/In (2),

where

L
e" =max { max |u}”—ul;
ek OZisEN

),

H={1/27]j=3,--+,9},  E={1/2/]j=0, -, jred}
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0.0 0.5 1.0

Fia, 8. Complete exponential fitting.

and jred is chosen so that e =1/2"" is a value at which the rate of convergence
stabilizes, which normally occurs when, to machine accuracy, we are solving the reduced
problem. A further discussion on the effectiveness of this as a measure of uniform
convergence may be found in Farrell {11]. Tables 1-3 give the experimental and
theoretical rates of convergence for a number of schemes for various values of A

The experimental rate of classical convergence given here is the average rate for
¢ = 1/2. This is the reason that the upwinded schemes, including that of Abrahamsson,
have a classical rate of 1.00. The Generalized Constant IF'in scheme is a new scheme,
which uses o7 = o(p|a(0)]) near x = 0, o = ¢(p|a{1}|) near x = 1, and the appropriate
directed difference approximation on each side of x =4%. The next, Il'in averaged a{x}
uses o; = al{p{lalx.,)+ a(x;)])/2). These tables illustrate that the rate of convergence
predicted for the schemes, which satisfy the sufficient conditions, is achieved in practice.
For a general scheme of this type the predicted rate min {A, 1) is the best attainable
rate, that is, there exist schemes that only achieve the predicted rate. We also note,
that as stated earlier, one can only attain uniform convergence of order h* for A <1
In fact, if we try to evolve schemes that attain a higher rate of uniform convergence
for a particular turning point problem, their performance for other more general
problems will deteriorate. Naturally, if we consider only classical (nonuniform) conver-
gence outside the internal layers, these schemes will attain higher orders, usually h or
in certain cases h°, as illustrated by the graphical results.

Appendix. Bounds on the terms S; and T;. In this section we give detailed proofs
of the bounds on S, and T appearing in § 4, Before we proceed to bound the terms
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0.0 0.5 1.0

Fic. 9. Centered differences,

S, we prove the following technical lemma which is a generalization of that in
Emel'tanov [8]. :
LevmMa Al Let A=1, B0, 121, and A #k—1, k—2, then
P

i z dy
Ty dz CAr . yE-A
Felp S (A}’“{“B) (AL+B)

Proof. By integrating twice explicitly and Taylor expanding about { we can show

J.ﬁ'rlp Jz dy p ‘ Al3p3{/\ - k}
7] =
et Je (Ay+ By 6

2

=M

forall {=2p.

[{AL+B+0,lpy !

HAL+ B = 6,ipy 7]

where 0= 6,, 8,=1. Now, since { = 2p,

2A-0l AL
A{+Bxblpz="—=—2
2 2
and
B S |
Af+Bx8lp AL A
Also, if X <Kk,

Ak
(A{+Bx6lp)* "= (%’Vﬂu B) =C(AL+B)TF
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0.0 0.5 1.0

Fi1G. 10, Abrahamssan scheme 2.

TaBLe |
A=0.1.
Uniform Classical
Scheme Exper. Theory Exper. Theory

1I'in ftting 0.098 0.1¢ 1.96 2.0¢
II'in averaged a{x) 0.090 0,10 2.18 2.00
Complete fitting 0.092 0.10 1.97 2.00
Gen. const. I[I'in 0.095 0.10 1.05 1.00
Upwinding 0.098 0.10 (.91 1.00
Samarkskii 0.098 0.10 1.85 2.00
Abrahamsson scheme 1 0.050 0.10 0.94 1.06
El-Mistakawy-Werle (Gen} 0200 0.10 2.00 2.00

and, if A >k,
(AL +BxolpY S ((A+)I+BY s CAL+ By

The result follows with M = PFjA —kjmax (C;, C»}/3.
Lemma A2, Lei S, fo S,, be defined as in § 4, then

8. = Ch, i=1,4,69,
§,=C(h+e), i=2,11,
8= cpminal i3 5.7, 8,10,

637
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TaBLE 2
A =025,
Uniform Classical
Scheme Exper. Theory Exper. Thery

IPin fitting 6.25 0.25 2.00 2.60
IFin averaged af{x) .30 0.25 2.16 2.00
Complete fitting 0.25 0.25 2.60 206
Gen. const, I'in 0.25 0.25 1.27 1.00
Upwinding 0.25 9.25 .85 1.60
Samarskii 0.25 (.25 2.01 2.G0
Abrahamsson scheme 1 0.25 0.25 0.93 1.00
Bl-Mistakawy-Werle {Gen} 0.24 0.25 2.60 2.00

TABLE 3

A= 125,

Uniform Classical
Scheme Exper. Theory Exper. Theory
[Fin fitting (.91 1.00 2.00 2.00
’in averaged a{x) i.16 1.00 2.00 2.00
Complete fitting 0.96 1.00 2.00 2.00
Gen. const, I'in 0.91 1.00 1.08 1.00
Upwinding 0.87 1.00 .99 1.00
Samarskii 0.91 1.00 2.00 2,00
Abrahamssson scheme 1§ .94 1.00 0.96 1.00
El-Mistakawy-Werle (Gen) 1.33 1.00 0.83 2.00
Proof.
Bound on §,. By (II1) and the boundedness of i,
(A1) (b(x;)— b= Ch.

Also Y(x} is a smooth funetion and hence

(A.2) = Ch.

x,aaa,[l)o Y{x) —zg—c Y(x)]

Finally, using (3.4) and (4.3), we obtain
(A.3) [, = D)y xup{x)| = Ch,
and by (3.11) and {4.3)
(A.4) £ B apl (o~ Do) = Ce* h{1+ (¢ + 102 ] = Ch,
Combining (A.1)-{A.4) we have
|S,{= Ch.
Bound on S,. Since Y(x) is smooth we have, using (V),
[Sol= Clell= Cih+e).
Bound on S;. By (3.10), (4.3}, we have using x;|=1 and e = ¢,
1951 = Ce*Phe VoLl = Che 2|+ 1) ' = Ch(|x,|+e'/ .
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x| +e"*)* " = C Hence

Now if A <1, (Ix]+eV)* 7 = Ch* Vand if A1, (
Isg!g Chmin(/\,l)l

Bound on S,. Consider first x, = h. Then, using (3.4),
= CH L

2h ¥y dl 20 ¥
[ J eyl 2) dz dy J J A dzdy
2h 6 Jh

o Ja dz?
Now, if x; = h, we have using Lemma A.1 with £=x;, r= hI=1, A=1, B=90,

xjd—h z
+hh ! J' J ug{y) dv dz

x;—h x;

x -tk z
ap-: | d
h *J j Y dr
x; e 0t x; y-

= Clh e = O,
Thus, combining (A.5) and (A.6), we get
184i= Ch
Bound on Ss5. Consider first x; = h ({; = p). Then, using {(4.3) and (3.10), we obtain
|85 = Ca*p(| Dovol £)] + 05 £

= Cs”?'(—[m oz ) dz+|vé(p)!)

)]

(A.5) =Ch =Chr

84

Sl=C

xi(txi

(A.6) =C

2p
= CEWH (z+ 1Y Tdz+plp+ 1)“‘].
{

)

2p
1S l= Cs”zl:j 24! dZ'%"ppA_Ijl = Ce™pt = Chh

]
If A>1,
1Syl = Ce* P Lpp+ 1) 1= Ch.
Hence
(A7) 1S = Cchminn,

Suppose now that x; = 2h (¢, =z2p). Then, using (4.3}, (3.10), Lemma A.1 with
A=B=1, k=2, and {/({+1) =1, we have

Lte (¥
J‘ J' vh(z) dz dy}
Li—p

f

|85 = Ce* 2L+ ptp™!

Gtp [y
=Cep™! J’ j (\ziwi-})}‘""z dz dy

tmp i
= Ce 2 p MG+ DN T E Chix e )
If, A <1 then,
(A8) 5= ol = o,
whereas if A2 1

(A.9) |§s|= Ch.
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Thus, combining (A.7)-(A.9),
|S|= Ch™AD),

Bound on S;. By analogous argument to that for S5, using (3.11) instead of (3.10),
we can show

|Ss|= Ch
Bound on S,. By {4.2) and (3.10)
S/ Ce™2p(gi+p) (4 + D' P = CHT PR 410
= Chix,+ "2 1= cpminan,

Bound on Sg. This is a more difficult result to prove, particularly for the case
x; = h. We shall show it first for x, 22k (£, 2 2p).
By (4.2}, (3.10), and Lemma 4.1 with A= B =1, k=3 we have

1 (1 [&rie v
|58i§C5A/2(}+P(§f+P))[“J J j Ju§V(2)] dzdydlil
P Jo Jo+ip ;
(A.10) \ 2 L i . .
SC M+ pl)p(L+ DT = CeMop(l+ 1) = ChmY

To obtain a bound for x;=h ({;=7) we must consider the cases p =1 and p>1
separately. For p=1 we have using (4.2) and {3.10)

|85/ = Ce* Poploi(0p)] some 6, 0<0<1
S CeM 1+ p%)p(Bp+ 1) 2= Ce¥ 7V 2 p(gp + 1)* s CR™INAD,
If p > 1 then again using (4.2} and (3.10)
1S5l = Ce™2(1+ "W Do 4]+ 105 L))
1 (i+v}p _
éC&‘mpz[—J j wi{z)| dz dy*"EvS(p)EJ
& W

P T=yip

(A1)

1 fll+y)e
éCs”zp[iJ J (1+z)A_2dzdy+{l+p)’\"l].
{

1-yle

Considering the cases A <2 and A >> 2 separately we can show that
(A12) |5 = ChR™n(A),
Thus, by (A.10)-{A.12),

Sz chmnon,

Bound on S,. By analogous arguments to those for S, and Sy, using (3.11) instead
of (3.10), we can show that

1Sel = Ch.
Bound on §,,. Using the definition of T(s), in Theorem 3.1,
b~ A
b]fT’(G)ag):b]_“"} il aoza’\a;
QO
and hence
Ldg!

O7b - T(0ay) = ali T
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Thus
‘S(Ariii)jz[alﬁafl)og? - g?l+=(b1_ - T’(U)aont

7 Can agt
8(A+1)f—a1é’.2[c{!(D()§i ‘&%") "F(Ot.'““l)ggg]

= CeN MV Ppgt = Chix* = Ch

=

using (4.3), Lemma 4.1 for x;=2h, and explicit calculation for x; = h. There remains
58(1\4‘-!)jzé’?aialDO(v()(gi} —vp(&))] = 15 v "Zi) §i551 = ChpmnA,
1

Hence
18101 = Chmin(/\,l)’

Bound on 8,,. We consider first x;=h ({;=p). By explicit calculation of the
differences, using {3.10) and (3.11) we can show that

(A.13) 18,,|=Ch.

To prove the result for x, Z2h {{ = 2p) we proceed in a manner similar to that in § 3.
Consider the cases x, = ¢* and x; = ¢’ separately, where we shall choose

i

A2 2

(A14) O<s<

If x, = ¢° we have £, = "7 and hence {00 as £ » 0. Using the asymptotic properties
of vy and v, and integrating explicitly,

A (z) — dm(0))

St
SnI%CE’\/z“[é‘?lj y 5
P dg-p Z
g[eeld
“bﬁ — (0:{2) —dm(0) T'(0)z") dwg?g;"zﬂ:g?"”l]
LR dz

= Cx}\a%[(l+w))‘”2—{] ) i (1) T = (1) T

+Cex} wherew =p/{;.
Thus, Taylor expanding and using =% we have
(1+e) 7 =(1-e) = Co,
and hence
(A.15) 18, = Ce.

There remains the case x; = ¢°. Using (3.10) and (3.11) we have

§3 Lte
%»S}l!SCEA’[2+}{“‘LJ {Z+1))\A_] dZ
2p Je-s

2 fLtp
+£'—J (24 1) dz+ L34+ 1) m-{;m“‘].
2'0 fi—s
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Integrating explicitly, rewriting in terms of 1+ o, where @ = p/({,+1) and expanding
as before we can show

(A16) IS = Ce* P NG+ D) + LG+ S Clx, + V)M P = G 0 = ¢

the latter by (A.14).
Combining (A.13), (A.15), and {A.16) we have

ISul=Clh+e).

Lemma A3, Let T, to T, be defined as in § 4, then

T, Cle+h™, Ty = Ch™mAD

T,=Ch, T, = Ch™=2),

T,= Ch?, T, Ch™mAD),
Proof. Since Y(x;) is smooth

IT\|= Ceg=Cle+h(a(0)+h)]=Cle+h%).
Now, using (3.9) and a(0) =0,

=C

iTzi =

h
J- {z4 ") gz,

o

i h - )
(MO)#‘*C}?)wJ (|zi+ £V dy
!,
If A> 1, we have

h
J M dz
0

| Tof = cpmmn,
Since #,{x,y) is bounded, we have, by (I1I),
|Ty|= Ch.
Using (4.2}, al(x,) =0, and (3.10), we get

b fye
J. J' (z|+ 1) dz dyi.
o Jdo

Now in a similar manner to T, we have
|Tij=Ch* for A <2,

and if A <1

|Th=C = Ch.

Thus

Tl = Cet2p?p

a2
Tl = Ce*2p (p+1)" 7,
Considering the case p =1 and p =1 separately we can show
T = Chmne,

To bound T; we again write it in integral form, use (3.10) and (jw|+1)"'=1, and

integrate explicitly to give
1 “+ye z
J. J J lw|* ! dz dy
[N o 4]

Using similar arguments to those in T, and T we may show
ETGI = Chmin(/\,l)-

1T5i§ Cg)\fzp‘i < CE:A/ZP*],OA*’! - Ch{\.
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