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FLOW CONFORMING ITERATIVE METHODS I'OR
CONVECTION DOMINATED FLOWS
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Abstract: We examine a number of variants of the Gauss-Seidel method for the sojution of linear
systems arising from covection dominated flow problems. We show that, because of the dominant
role played by the characteristics in such problems, the rate of convergence depends critically on
following the flow direction and thus the spectral radius is an inappropriate measure in this case.
We introduce the Symmetric Gauss-Seidel method and demonstrate that it performs well for one
and two dimensional examples. We also discuss & number of other flow conforming methods.

1. Introduction

Convection diffusion problems are a class of problemns, whose

numerical solution exhibits significant difficulties, particu-
larly when the diffusion coefficient is small. This case is
called convection domineled flow, The difficulties in obtain-
ing the solution are due to the prescence of sharp bound-
ary and/or interior layers, which degrade the accuracy of
standard difference schemes. One approach to solving these
preblems is to employ a uniform mesh and either an up-
wind scheme or an (exponentially} fitted scheme which at-
tempts to model the boundary layer or interior layer ac-
curately [L][2][3][4]. All these methods respect the natural
direction of fow in the problem, as given by the characieris-
tics of she differential equation. If the difference scheme does
not conform to this inherent direction in the problem, a sat-
isfactory solution will not be obtained without considerable
computational effort. An obvious question which arises s
whether this directionality in the solution need also be con-
formed to by an iterative method used to solve the linear
systems, arising from the difference scheme.

In this work, we consider the linear systems which avise
as a result of the finite diffevence discretization, on a uniform
mesh, of linear singularly perturbed differential equatious
in one and two dimensions. Such problems are theoretical
models for the physical phenomena of convection dominated
fiow. We shall show that considerable benefits are derived
by using iterative schemes which conform to the natural di-
rection of the problem. In fact, when the diffusion coeflicient
is suffictently small, a correctly conforming method will con-
verge after oniy a few iterations, For this reason, the spectral
radius, which measures the asymptotic rate of convergence,
is not the most suitable measure of the appropiateness of a
scheme, since it is essentially direction independent.

2. One Dimensional Problems

We first analyse a sample one dimensional problemn :
—ew {2} + p{z)e'(2) + r(zdulz) = flz), 6 <z <1,

WD) = (1) = 0.

We assume that #{z} > 0 and that (2} and p(x} have no
simultaneous zeros. In this case, ¢ plays the role of the
diffusion coefficient and we shall assume that the flow ig
convection dominated, that is ¢ << 1, whereas p(z) is of
order 1 over most of the region under consideration. The
behaviour of the problem will depend on the zercs, if any,
of p{z)} in the interval {0, 1]. If p{a) > 0(< 0) the flow is to
the right (left) and there is an exponential boundary layer
at the left (right). We reflect this fact by discretizing using
an upwinded scheme in the forward {backward) direction or
an exponentially fitted scheme. On a uniform grid of size
A =1/(n+ 1} the upwinded difference scheme is :

— by 1+ it — Cgy = fi, 1 <15 m, (1)

Ug = Up = 0,

where the coefficients o4, by, ¢; are given by
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and p; = plz),ry = rlz) and f; = flz). An exponen-
tially fitted scheme would also be of the form (1), with the
coefficients a;, by, ¢; given by
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and il
PR #
€= ea(-—_f-—-— }, where o(z) = pramey

The analysis and resulis are similar in both cases. How-
aver, it is clear that ¢ < e. Thus the exponentially fit-
ted method behaves like an upwinded scheme with smaller
e. This makes the difference scheme more accurate than
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the npwinded scheme. In physical terms, we can view the
age of an upwinded scheme, rather than the (uustable) cen-
tered difference scheme, as introducing ortificial wiscosity
into the approximation. This normally leads to diffnsion
of the boundary layers. Fxponentially fitted schemes effec-
tively seek to use precisely the correct amount of artificial
viscosity., For simplicity, we shall do our analysis in terms
of the tpwinded scheme. However it is clear that analogous
results exist for exponentially fitted schemes, In fact, the er-
ror reduction invoived will be even faster, since, in general,
this is proportional to ¢ for the upwinded scheme and ¢; for
the exponentially fitted scheme.

In either case the matrix A € R"*" of the difference
scheme is a tridiagonal matrix. 14 is easily shown that this
mateix s an erreducibly dingonally dominant Momelriz {5,
p23} under the above assumptions, and thus that A~ > 0,
where the inequality is meant component-wise.

Now consider the matrix splitting of A, into a diagonal
D, alower triangnlar L, and an upper triangular I/ matrix,
A= D—-L-U. The forward (backward) point Ganss-Seide]
methods, which we shall call FGS and BGS respectively, may
now be written as

MpuwPth = Npuf b ) where My =D — L, Ny = 1,

Myt = Nyu® 4 £, where My=D-U, Ny =L

In either case, the splitting 4 = M — N is a regular splitting
of the matrix A and p(M™N) < 1 {5, Theorem 3.14]. Thus
both iterative methods are convergent with the same asymp-
iotin convergence rate, since p(Mf‘1 Neyow p(MTINGY =
p(DY(E + U))/2, However although the asympiotic con-
vergence rate is a good measure of the ultimate rate of con-
vergence of these methods, Han et al. [6] [7] have shown
that the initial rate of convergence for the two methods dif-
fer considerably. It is well known that, in general, the error,
as measured in the L., norm, may increase initially, For
this reason, in [6] [71, the initial error reduction was calcu-
lated by considering the matrix norm of the Heration matrix,
M TN on.

2.1 Non-turning point problems

I pla) is of one sign, that s 6 > pla) > p > 0 or § <
pla) < p > 0, the problem is said to be a non-turning point
problem. In this case, it is shown in {6] [7] that for mesh
spacings 7 which satisfy ¢ < .8ph the error reduction for the
forward Gauss-Seidel (FGS) Is given by

2¢ ‘
17—t =t
AN o < 25 @)
and thus if ¢ < ph%/2 the error reduction is monotonic. The
analysis is performed by writing

MTIN =(I - D'y Doy
and then estimating the norms of D~1L and D7, These
ave respectively strictly lower and strictly upper triangular
ices, with a non-zero sub(super)-diagonal whose entries
are given by
ot {pi T pi)/2
! 26 + || + rih

6+ (|ps| — p:)/2
28 4 fps) L b T

fi = (3)

where § = ¢/h. Note that (2) implies very rapid conver-
gence if ¢ € h. The backuward Gauss-Seidel (BGS), on the
other hand does not exhibit this property. Conversely, if
plz} < 0, BGS exhibits rapid convergence under appropri-
ate conditions and I'GS does not. Thus, if one solves the
linear system in the natural direction given by the charac-
teristics, one achieves rapid convergence. We shall see later
that similar problems arise if we assume p(z) has one or
MOre Zeros.

We shall now consider another iterative method which
we shall call Symmetric Gauss-Seide! {SGS). This consists
of an application of FGS, followed by an application of BGS
given by:

MpubH2 = Npwk £ f where My = D — L, Ny = 1,
MyuP*t = NpuftU/2 o f0 where My = D - U, Ny = I,

Thus the iteration matrix is M, N, M Ny This may be
considered as a special case of the Symmetuc Successive
Over Relaxation Method {SSOR) with relaxation parameter
w = 1. Thus, as remarked in [8], provided we store interme-
diate results, it requires no more caleulations per iteration
than the FGS. Note that the FGS sweep is guaranteed to
reduce the error, but the BGS might increase it again. We
shall show that this is not the case, although the error re-
duction is only as good as that for PGS,

Theorem 1: If the mesh spacing & satisfies ¢ < .Bph
the error reduction for the Symmetric Gauss-Seidel (SGS)
is given by

-1 e

M7 N < e
Proof: This is similar to that of [6] [7]. To simplify notation
we write ||} for §.|les.

137 Wl = (10 Ny M 7N
-0~ 1UE!HB LM NG (4)

1l

Using the fact that D=1 < .DE'IUO and D711 < Dg]'LO,
where Ag = Dy — Ly — Up is the matrix corresponding to A
with »; = 0,¥i. Using similar arguments to [6] [7], we have

M2+ 4

IMia . 5
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Using (7}, it follows that,

L2045
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P

Combining {4}, {8}, (6} and (5} we get

s 2Apb+p2né2+p 8 Zné
IMINL < L
PN s < i+p2+p p & 2645 B

Thus 5GS achieves the same rate of convergence as the PGS,
which solves in the characteristic direction. It is easily shown



EA. Farrell/Flow conforming iterative methods 683

that SGS also achieves the same rate of convergence as BGS

{or the problem with p{z) < p < 0. This is Hustrated in
Figure 1 and Table 1, which are for the problem

()~ u(z)= -2, <<, (9)

u(fy = =1, u(l)=1,

with ¢ = .000081. 1t should be noted that this problem
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Figure 1. Log of error after first iteration for problem (9}

Method

1/h | FGS | BGS | SGS
20 20 2 2
00| 3 3

Table 17 Problem (), Iterations te achieve error 107%

has an exact solution u{z) = 2z ~ 1 and thus exhibits no
boundary layers. For all the results exhibited, the initial
guess is chosen so that the initial error at each point is 1.
Figure 1 gives the log of the error after one iteration at each
point of a grid with b = 1/20. For this problem, we can
choose b = .5 x 107* and expect an errar of approximately
1074 afier the first iteration. The FGS method shows almost
no error reduction except at the right-most point where it
is 1074, A similar reduction propagates across the grid at
subsequent iterations, requiring a number of iterations of
the order of the number of grid-points to reach the left-hand
boundary and thus reduce the L., norm signiicantly. This
is illustrated in Table 1

An alternative method, to exponential fitting, for model
intg the solution accurately in the boundary layer, is to refine
the mesh there, The rapid convergence results above do not
hold in this case, since they depend crucially on the ratio of
¢ to k. However, even in this case, Symmetric Gauss Seidel
converges faster that a Gauss Seldel scheme performed in
the direction opposite to the fow.

2.2 Turning-point preblems

If pf{z) has one or more zeros, the problem is said to be a
turning point problem. We shall, for convenience, assume
that the zero z* of p(z) Hes in {zg,zeqr). There are two

interesting cases here. The first s when p(0) > 0,p(1} < 0
and p'(z) < 01in [0,1]. In this case the zero 2* corresponds
to a sink with the characteristic flow towards 2*. ¥or this
case, Han et al. [6] {7], used » method which swept to the
right white p; > 0 and then sweeps to the left while 3y < 0.

The second interesting case is when p(0) < 0,p(1) > 0
and p'(z) > 0in {0,1]. In this case the zero a* of plx) cor-
responds to a source and the characteristic flow is directed
ongward from z*. In [6] [7], a special block Gauss-Seidel
method is proposed, in which the black of [ around the
turning-point is & 2 x 2 block, involving the k-th and (B+ 1)
th rows and columns and the others are 1 x 1. In both the
sink and source cases, it is shown in [6} [7] that the special
scheme proposed satisfies a result similar to that for the case
where p(z) is of one sign. All of these special schemes cor-
respond to a reordering of the mesh-points and it is in this
context that it is generalized in [6] to the two-dimensional
case. An alternative method for the source problem, called
the Flow Directed Point Iteration (FDPI} method, is pro-
posed in {7}, This does not invelve the 2 x 2 block. In it the
mesh is swept from left to right, going from &+ 1 to n, and
then swept from right to left, going from k to 1. The error
analysis for this method is not as favourable., However, it is
easier to generalize to two dimensions.

It should he noted that neither FGS nor BGS satisfies a
monotonicity or rapid convergence result, The SGS, on the
other hand, performs well in both cases. This is illustrated
in Fignre 2 and Table 2 for the sink problem:

—cu(e) = (e~ 1/ (2)+3/2u(z) = 1, D<=z <1, (10)
w{0) = -1, w(l)=1

:
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Figure 2: Log of error after fizst Heration for preblem (10)

Method

1/h | FGS [ BGS [ 5GS
207 0] 10 2
0] 50| 50 3

P

Table 2: Problem (10), Iterations to achieve ervor 105
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We can prove a theorem similar to Theorem 1, for this
case algo,

Theorem 2: ILet (1) be a sink problem, with the zero of
plz)=*, in the interval {z7,2141) and hence, § > plz) > uh,
Then, if ¢ satisfies ¢ < min(.8ph, ps%/2), the L., norm of
the error e of the SGS method satisfias:

™| < m”ﬁ I

Proof: Consider first the forward sweep. The new error
e /2 {5 given by
(T =D iL)em™t/? = pripgem g

¥

where the entries of D71L and D™1U are given by (3) and

é=(fef, Baed, .., frrel, 0).
Divide the system into two parts

By 0 eT“N et
BO B em+1/2 - -

where By is an { % ! matrix and B_ isan (n — ) x (n =)
matrix. Then

>

oy

Byl o gt (11)

BeemTE o g L poemti/ s (12)

where BgeT"’l/z = (gcszle?Hl/?,{), <, The analysis
for (11} follows as in {6] [7] and Theorem 1, except p is
replaced by ph. Thus for € < 8ph,
me1/2 2e .
el < L}:‘giéenﬁ- (13}
For (12), writing B_ = I~ D_ L. and letting Dy and Lg be
as in Theorem 1 we have

HDZPL i < 1Dy Lol <1

4
T 264p
Hence

(7= D2 L)l

1A

Combining (13) and {17) with similar estimatas for the back-
ward sweep gives

o 4€
e < e

Figure 3 and Table 3 illustrate the results for a source prob-
lem:

—en(z) + {m - 2w ()t u(z) =0, 0<a <, (18)
w{0) = -1, wuf{l)= 1.

In sink and source cases it is clear that for FGS and BGS the

0-—+++++++++ K OMOK KK KK
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FGS +
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Figare 3: Log of ervor after first iteration for problem (18)

Method

1/k | FGS | BGS | 5GS
20 11 11 2 |

108 52 52 34

Takle 3: Problem {18), lterations to achieve error 1078

error is reduced rapidly where we are solving in the correct
direction whereas we reduce the error significantly at only
one peint where we are solving in the wrong direction. SGS
achieves its effect by reducing the error significantly at each
point in either the forward or backward sweep.

(7 = D5 Lo) M| = 1/][(1 = D3 Lo)|

28 + 5 Figure 4 and Table 4 illustrate the results for a problem
= = <2, (14} ] 4 sinks:
§4p with sources and sinks:
-Now, using (13) and ¢ < uh?/2, e (2) (2 1/4)z-1/2)(z—3/4 (2 4 u() = 0, 0 < & < 1,
(19}
— 64‘ ‘pH‘l‘ mo § m4+1/2 u({)) =} ’u,(] } = 1.
F B N €riq+ - e ? .
Flxs 20 + |pg+3 ; + TH..}}E 2 28 + [j)[,{.l; + Pid i !
28 + |prpa| Method
e =R | PR I VU 15 y
il S g T+ a1 <N (18) i/b [FO§ [ BGS ] 5G3
- 20 5 7 2
. 5+ Ipil C o
8] e L ™| 16
&l < 25-h1pd~%fghiq+i"'he I (16} 100 26| 28 3

Thus combining (14}, (15}, (16) we get Table 4: Problem (19), Iterations to achieve error 107%

[l < 21em] (17)
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Figure 4: Log of error after first Heration for problem {19}

3. Two Dimensional Problems

We consider the model two-dimensional convection- diffusion
problem on the unit square £

—eAutple, Yy +Q’{m:3’)uy+r($=y}u = f(x,y)., {z.y) €0
(20)
ulz,y) =0, {z,y) € §0.

We consider five-point upwinded difference schemes for this
problem.

3.1 Gauss-Seide! on Admissible Partitions

In {8], it is proved that, if the mesh-points are re-ordered to

satisly an admissibiliiy condition, which is related to the di-
rection of flow at each point, then rapid convergence of the
type discussed in the previous section can he achieved by
2 block Gauss-Seidel method. The admissibility condition
requires that the mesh points be divided into an ordered
partition My, ... Nop, such that if P € A} and Q € A,
k < 1, are two neighbouring points then the coefficient of
ug in the difference scheme for up is —e, This is a two-
dimensionat generalization of the one-dimensional ordering
criteria above. Details are also given there of & method of
finding an admissible partition. To be practical the diagonal
matrices [; of such an iterative method must be easily in-
verted. Provided the coefficients p(z, y) and ¢(z, ¥} are such
that their curves of zeros are a positive distance § apart, and
h < 8/2, then an admissible partition can be found where
each of the matrices D, are either 2 % 2 or 1 x 1.

3.2 Symmetric Line Gauss-Seidel

These methods, while giving an excellent rate of conver-
gence, are not easy to implement. Also asymptotic error
results (cf. [5, Theorem 3.15, p199]) suggest that block
methods, such as line Gauss-Selde! should achieve bebter
asymptotic rates of convergence. If the flow is complex,
Lowever, a re-ordering to satisfy the admissibility condjtion
is not possible for a line Gauss-Seidel method. This is be-
cauze the flow at each point of & line is not necessarily in the

same direction. In practice as is shown in Table 3, the for-
ward (hackward) line Gauss-Seidel FLGS {BLGS) alse show
the disadvantages of FGS (BGS). Motivated by these facts,
we propose & Symmetric Line Gauss-Seidel (SLGS) method
which is defined analogously to $GS. The matrices [); in this
case are tri-diagonal and the systems are thus easily solved
using exact methods. The matrix of the difference scheme,
A, has the form:

Dl U} G oo 0
Ly Dy Uy ... 0
6 ... 0 L, D,

where D is & square tri-diagonal matrix of order n, the num-
ber of mesh points on each line in the ¢ direction, and I, and
U; are diagonal matrices of order n. Consider the splitting
of A into a block tri-diagonal D = diag {Dy,Dy,..., D), 2
bloek lower triangular L, and an block upper triangular U
matrix, A = D — L — U. The SLGS is then defined as :

MpFtHE = Now® 4o f,  where My=D-LNe= 1,
Myl = NpwF42 4 f 0 where My = D~ U, Ny = L.

In practice, under certain resirictions on the coefficients,
this method achieves rapid canvergence tesults of the type
seen for 5GS. These restrictions are essentiaily similar to
the ones above. They exclude simultaneous zeros of p(w, )
and g{z,y) and hence spiral and radially symmetric flows.
Again, to prevent the cost of this method from being double
that of a FLGS or BLGS method, it is necessary to save in-
termediate results for use in the next half iteration. Results
for this method are Hlustrated in Table 5. For problems 4
and 3,

w = {2~ 8 + (y - 5/
The characteristics of problems 4 and 5 are expanding spirals
and contracting spirals respectively. These are considerably
meore complex flows than have been treated theoretically.

LGS Method

Problem | Coefficients i/h [ F[ B 5
1 ple)=3r—y—1 20 220 2
glz) = 1 40 | 2140 2

2 G ple)=3z~y~1 20 | 23] 23 4
glz) = do + 2~ 3 40140 | 40| 5

3 pe)=3z—p—1 : 20113 | 13 3
gle)= -2 ~ 3y + 2 40 126 | 26 3

1 I pa)=2z— B)—(y—BHw | 20]13]i3] 5
g} = (o~ Blwi2c—5) | 40]23|28] 5

5 pla) =2z - 5)—{y - 5w | 20y 11|11 2
glw) = (2 — Bjw — 2z — .5) 40121 | 21 3

Table & [ierations to achieve error 107% for problem (20)
with r{z) = 5 and f{z) = 0.

3.3 Alternative Flow Conforming Methods

Han et, al [6],[7] also propose a number of alternative meth-
ads, which are simpler {o implement than those based on the
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admissible partition. Oue of these, is the natural generaliza-
tien of FDPI to twe dimensions, in which the mesh points
are divided into four sets, one for each direction of flow NE,
NW, SE and SW. These are then swept in the natural fow
conforming directions.

Another, Flow Directed Horizontal Iteration (FDHI) is
a vartant of the Ine Gauss-Seidel method in which only the
horizontal component of the flow p(z, vy} is considered in
choosing the solution direction. The points on each hori-
zontal line are divided into two sets, one where the flow is to
the right, which is swept left to right, and one where the flow
is to the left, which is swept right to left. This is essentially
an improvement on SLGS since only the part part of SLOS
which gives the greatest reduction in error is performed. If
intermediate results are rot stored in SLGS, each iteration
would involve just half the work of a SLGS iteration. An
analogous Flow Directed Vertical Iteration (FDVI) can be
defined similarly. These can be combined to give FDHVI,
which consists of an iteration of ¥DHI followed by an itera-
tion of FDVL

In general, the admissible partition based method of [6]
[7]; performs better than the other alternatives but at a cost
of greater implementational complexity, In all case these
methods are significantly better than the FLGS or BLGS
used in either the z or y directions, and illustrate well the
importance of conforming to the natural low direction in the
problem nof only in formulating the difference equations but
also in solving them iteratively.
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