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Abstract: We examine a number of variants of the Gauss-Seidel
method for the solution of linear systems arising from a singularly per-
turbed differential equation. We show that, because of the dominant
role played by the characteristics in such problems, the rate of conver-
gence depends critically on solving in the flow direction and thus the
spectral radius is an inappropriate measure in this case. We introduce
the Symmetric Gauss-Seidel method and demonstrate that it performs
well for one and iwo dimensional examples.

Introduction

We consider the linear systems which arise as a result of the finite
difference diseretization, on a uniform mesh, of linear singularly per-
turbed differential equations in one and two dimensions. Such prob-
lems are theoretical models for the physical phenomena of convection
dominated flow. It is well knawn that, when the singular perturba-
tion parameter { representing the diffusion coeflicient ) is small, these
problems are diflicult to solve numerically due to the prescence of sharp
boundary and/or interior layers. One approach to solving these prob-
lems is to employ a uniform mesh and cither an upwind scheme or
an exponentially fitted scheme whick attempts to model the boundary
tayer accurately [1][3]. These methods respect the natural direction
of flow in the problem, given by the characteristics of the differential

equation. One Dimensional Problems

We first analyse a sample one dimensional probiem.
—en(z) + ple)(x) + r{z)ulz) = f{x), Bz <1,
u(0} = u(l) = 0.
We agsume that r{z} > 0 and that #(z) and p{x) have no simulsancous
zeros, The behaviour of the probiem then depends on the zeros, if any,
of p{z}) in the interval {0,1}. I p{z) > D{< 0} the flow is to the right
(left) and there is an exponential boundary layer at the left (right).
We reflect this fact by discretizing using an upwinded scheme in the

forward (backward) direction or exponentially fitted scheme. On a
uniform grid of size & = 1/{n + 1} the upwinded difference scheme is :

~biuiog Fopup e = fiy 184K,

Uy = Uy = 0,

where the coeflicients a;, b;,¢; are given by
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e = %"i;-i- %iPiH?‘s 26,
and p; = pl2), v = r{z:} and fi = f{z;). The matrix A € B™*", of
the difference scheme is thas a tridiagonal matrix. It is casily shown
that this matrix is an irreducibly diagonally dominant M-matriz [5,
p23] under the above assumptions, and thus that A~! > 0, where the
inequality is meant component-wise.

Now consider the matrix splitting of A, into a diagonal D, a lower
triangular L, and an upper triangslar U matrix, A = D~ L ~ I/, The
forward (backward) point Gauss-Seidel methods, which we shall call
PGS and BGS respectively, may now be written as

Mf'uk+1 = Nfuk + f, where My= D~ L, Ny=1U,
Myt = Nyub & f, where My=D U, Ny = I,
i f

In either case, the splitting 4 = M — N Is a regular splitting of the
matrix A and p(M™'N} < 1[5, Theorem 3.14]. Thus both itera-
tive methods are convergent with the same asympiotic convergence

rate, since p(M7 Nyy = p(M7N,) = p(DI(L + U))/2 However,
although the asymptotic convergence rate is a good measure of the ul-
timate rate of convergence of these methods, 'in and Kellogg {2] have
shown that the initial rate of convergence for the two methods differ
considerably. It is well known that, in general, the error, as measured
in the L., morm, may increase initially. For this reason, in {2}, the
initial error reduction was calculated by considering the matrix norm
of the iteration matrix, {{M 2 N|[...

plz) ol one signeg. p2ple) > p>0

In this case, it is shown in [2] that for mesh spacings & which satisfy
e < 8ph the error reductior for the forward Gauss-Seidel {FGS) is
given by

2e
TN § e j
1247 Nl < 515 3]

and thus if € < ph?/2 the error reduction is monotonic. The znalysis
is performed by writing

M7TN =({I -0ty

and then estimating the norms of D™'L and D™, These are re-
spectively strictly lower and strictly upper triangular matrices, with a
nen-zero sub(super}-diagonal whose entries are given by

_ S+ (Ipl+ p)y2 é+ (Il = pi)/2

= - 2
Y +|pe| + b’ B 26 4 [ + ik’ )

where § = ¢/h. Note that {1} implies very rapid convergence if ¢ < k.
The backwaerd Gauss-Seidel {BGS), on the other hand does not exhibit
this property. Conversely, if p(z) < 0, BGS exhibits rapid convergence
under appropriate conditions and FGS does not. Thus, if one solves the
linear system in the natural direction given by the characteristics, one
achieves rapid convergence. We shall see later that similar problems
arise if we assume p{z) has one or more zercs.

We shall now constder another iterative method which we shall calf
Symmetric Gauss-Seidel {5GS). This consists of an application of FGS,
followed by an application of BGS given by:

Mk o Ny b, where Mj=D— L N;=1U,
Myt = NuktV2 4 f where Mi=D~UN; =L

Thus the iteration matrix is Mb'“leMj'lN_f. This may be considered
as a special case of the Symmetric Successive Over Relaxation Methad
{SSOR) with relaxation parameter & = 1. Thus, as remarked in (4],
provided we store intermediate results, it requires no more calculations
per iteration than the I'GS. Note that the FGS sweep is guaranteed to
reduce the errer, but the BGS might increase it again. We shall show
that this is not the case, although the error reduction is only as good
as that for FGS.

TugoneM L: I the mesh spacing /i satisfies ¢ < .8ph the error reduc-

tion for the Symmetric Gauss-Seidel (SG3) is given by

2e

-1

M N € =5

Progr: This is similar to that of [2]. To simplify notation wo write

HE for {)ffe-

M Voo " Ny M | (3)

(T = D10y DLl |1

1A

It is clear that D™ < Dg'WUs and D™VL < DF'Lg, where Ay =
Dy ~ Ly — Uy is the matrix corresponding to 4 with r; = 0,¥i, Using
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similar arguments to [2], we have

gy s ZEEERL @
W07 H < 05 ol = g (5)
BT 2 - 105 el = 1 s = e (®)

Using {8), it follows that,
KT~ D7y < 1 - e < B2 ()

aET
Combining {3}, {7}, {5) and (4} we get

WP ELpInE2E+p 4§ <2115
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Thus SGS achieves the same rate of convergence as the FGS, which
solves in the characteristic direction, It is easily shown that §GS also
achieves the same rate of convergence as DS for the problem with
p{z) € p < 0. This is illustrated in Figure 1 and Table 1, whick are
for the problem

—en(x) —wzy= -2, Oz <, (8}

w0} = -1, w(1}=1,

with € = 000001, It should be noted that this problem has an exact
solution u(r) = 22 — 1 and thus exhibits no boundary layers. For all
the results exhibited, the initial guess is chosen so that the initial error
at cach pointis 1. Figure 1 gives the log of the error afier one iteration
at each peint of a grid with £ = 1/20. Tor this problem, as expected,
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Figure I: Log of error after first iteration for problem (8)

we got an error of approximately 10~% alter the first iteration, The
['GS method shows almost no error reduction except at the right-most
point where it is 107, A similar reduction propagates across the grid
at subsequent iterations, requiring a number of iterations of the order
of the number of grid-points to reach the left-hand boundary and thus
reduce the Ly, norm significantly. This is illustrated in Table 1.

Method

1/h | ¥GS | BGS | 5GS
20 20 2 2

0h L 191 3 3

Table 1: Problem (8), Number of iterations to achieve crror 1078

p{x} having one or more zeros

There are two interesting cases here. The first is when p{0) > 0,p(1} <
0 and p'{z) < 0in [0,1]. In this case the zero 2* of p{z) corresponds
to a sink with the characteristic flow towards «*. For this case, Il'in
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and Kellogg {2], used a method which sweps to the right while p; > 0
and then sweeps to the left while p; < 0. The second interesting case
is when p(0) < 0,p{1) > 0 and p/(x} > Oin [0,3]. In this case the
zero a* of p(x) corresponds 10 a source and the characteristic flow is
directed outward from z*. In {2}, a special block Gauss-Seidel method
is proposed, in which the first block is a 2 3 2 block and the others are
1% 1. In both the sink and source cases, it is shown in [2] that the
special scheme proposed satisfies a result similar to that for the casge
where p(z} is of one sign, Both of these special schemes correspond
ta a reordering of the mesh-points and it is in this context that it is
generalized in {2} to the two-dimensional case. It should be noted that
neither FGS nor BGS satisfies a monotonicity or rapid convergence
result. The SGS, on the other hand, performs well in both cases, This
is illustrated in Figure 2 and Tabie 2 for the sink problem:

~ {2} — rf2uf{z} 4+ 3 2ufz) = =1, O<p <1, {9}
w(0) = =1, w{l)=1.

We can prove a theorem similar to Theorem 1, for this case also.
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Figure 2: Log of error after first jteration for problem (%)

Method

1/h | FGS | BGS | 5GS
20 16 10 2

180 50 50 3

Table 2: Problem {3}, Number of iterations to achieve error 105

Tagowrem 2: Let (1) be a sink problem, with the zero, z*, of plz)

in the interval (24,214, ) and hence, p 2 p{z;) > ph, ¥i. Then, for the
S5GS method, i ¢ satisfies ¢ < min{.8ph, ph*[2), the L., norm of the
error in iteration m 4 1 satisfies:

4¢
”em-H“ S m”gm“ .

Proor: Consider first the forward sweep, The naw error emF1/2 ig

given by:
(I = D7 L)em 1/t o prigem e
where the entries of D75 and D™ are given by (2) and
&= (Bl e, By, 0T

Divide the system into two parts

By 6 e?“’l? _ &t
By B. Ef_rz+1/2 - P
where By is an ! matrix and .. is an {n~!) x (n = [) matrix, Then

Byt ot (10)

Bl = o et (11)
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where Bge?“ﬂ = {-n;+1e;il+1/2,0,...,OJT. The analysis for {10)
follows as in [2] and Theorem 1, except f is replaced by ph. Thus for

€ < .8ph,
(12)

For {11}, weiting B = T — D_L_ aund letting Py and Ly be as in
Theorem 1 we have

m 26 i3
B2 < =5l

é
B3] -1 s
UPZ LN S DT ol = s <

Hence
WI-DIELY € 31— [HDIP Lol £ YL = 1105 Loll)
24 (33)

= <2,
b+p ~

Now, using (12) and € < uh3/2,
8+ pra mo §
25+ |prest + nesh 2
28 4 [y
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Thus combining (13), {14}, (15} we get

R 1f2
2+ jpral g

E“.l = 1

{14)

(15)

Ne™ 2 < 2llem i

(16}

Combining (12) and (16} with similar estimates for the backward sweep

gives
e

juh®
Figure 3 and Table 3 llustrate the results for a source problem:

e g —lle™|f.
— (u”(m) BN :.-:/2u'{1:) du{r)=0, O0<z<l,
w0} = ~1, w{l)=1.

In sink and source cases it is clear that for FGS and BGS the error
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Figure 3: Log of error alter first jteration for prablem (17)

Method

/0 | TGS L BGS | SGS
20 11 11 2

100 52 52 3

Table 3; Problem (17), Number of iterations to achieve error 1679

is reduced rapidly, where we are solving in the characteristic direction,
whereas we reduce the ervor significantly at only one point when we are
soiving in the opposite direction. SGS achieves its effect by reducing
the error significantly at each point in either the forward ar backward
S\\'EEP.
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Two Dimensional Problems

We consider the model two-dimensional convection-diffusion problem
on the unit square

— edut pl,yhus + alz gy + vz = f(ey), (2,60 (18)

ulz,y) =0, {2,y) € §0.

We consider five-point upwinded difference schemes for this problem.
In [2], it is shown thaf, if the mesh-points are re-ordered to satisfy
an admissibility condition, which is related to the direction of flow at
each point, then rapid convergence of the type discussed ir the previous
section can be achieved by a point Gauss-Seidel method. Asymptotic
error resuits (¢.d. [5, Theorem 3.15, p199]} suggest that block methods
should achieve better rates of convergence. If the flow is complex, how-
ever, a re-ordering to satisfy the admissibility condition is not possible
for a block {line) Ganss-Seidel method. This is because the flow at
each point of a line is not necessarily in the same direction. In prac-
tice as is shown in Table 4, the forward (backward) line Gauss-Seidel
FLGS {BLGS) also show the disadvansages of FGS {BGS). We pro-
pose a Symmetric Line Gauss-Seidel (SLGS) method which is defined

analogously to SGS. The matrix of the difference scheme, A, has the
form:

Dy U 6 .00

Ly Dy Uy ... D

8 ... 0 En Da
where D; is a square tri-diagenal matrix of order n, the number of
mesh points on each line in the 2 direction, and i; and f; are diagonal
matrices of order n. Consider the splitting of A into a block tri-diagonal
D = diag (D, Dy, ..., D), 2 block lower triangslar L, and an block

upper triangular U matrix, 4 = D L~ U, The SLGS is then defined
as :

M2 = Newb 4 f, where My =D = L, N; = U,
MyuF¥t = N2 4 £ where My=D-~UN;= L.
In practice, under certain restrictions on the coefficients related Lo sta-

bility of the difference scheme, this method achieves rapid convergence
results of the iype seen for SGS. This is illustrated in Table 4.

Method

Problem | Coefficients i/h | FLGS | BLGS [ SLGS
1 Hrl=3z —py-1 20 2 26 2
glzy=1 40 2 40 2

2 ple) =3z ~y~1 204 23 23 4
(zy=4r+2 -3 | 40| 40| 40 5

3 ple)=3x ~y—1 20 13 13 3
gla) =~z —3y~2| 40 20 26 3

Table 4: Number of iterations to achieve error 107% for problem (18)
with r{z) = .5 and f{z) = 0.

(1} E.IDoolan, J.J.H.Miller, W.H.A. Schilders, “Uniform Numerical
Methods for Problems with Initial and Beundary Lagers”, Boole
Press, Dublin, (1980)

{2} H.Han, V.D.B'in, R.B.Kellogg, W.Yuan, “Flow Dirccted [teration

for Convection Dominated Flow”, to appear in Proceedings of
BAIL V (1988)

[3] R.B.Kellogg, A.Tsan, “Analysis of some Finite Differcnce Approx-
imations for a Singular Perturbation Problem without Turning
points”, Math. Comp., 32, pp 1025-1039 (1978}

[4] W Niethammer, “Refaxation bei Komplexen Matrizen”, Math.
Zeit., 86, pp 33-40 (1964)

(5] R.5.Varga, “Matrix Tterative Analysis”, Prentice Hall, Fnglewood
Clifis, NJ, 1062






