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Abstract: Approaches (one-dimensional and two-dimensional or higher) to exponentially fitted
methods for continuity equations of semiconductor models are reviewed, all of them variations on
the Scharfester—Gummel scheme, Convergence theory for two and higher dimensions is considered.
A test problem is solved using a Scharfetier-Gummel discretization on a rectangular grid, and results
are given for numerical simulations on three test problems with varying boundary conditions.

1. Introduction

In this chapter we shall consider a number of approaches which lead to exponen-
tially fitied methods for the continuity equations of semiconductor physics. These
are all variations on the well-known Scharfetter-Gummel scheme first proposed
in [16]. For simplicity we shall confine ourselves for the most part to derivations
on rectangular grids.

The equations describing the electrostatic potential 1, and the hole and
current densities n and p are given by [17]:

€AY =g(n—p— N) (Poisson equation) (1.1)

Jn=—q(pn n V9 = D, V n)  (electron current relation) (1.2}
Jp = —q(pp p V o+ D, Vp)  (hole current relation) (1.3)

V- Jp =qR(n,p) (electron — continuity equation) (1.4)

V- J, = —qR(n,p) (hole — continuity equation) {1.5)
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V. Jp=—¢qR(n,p) (hole — continuity equation) (1.5)

for (z,y) € O ¢ R? (where Q is bounded, convex domain representing the
device geometry) subject to Dirichlet boundary conditions on T', (Okmic contacts)
and homogeneous Neumann boundary conditions for ¢, n,p on I (insulating
boundaries) with 0 = I'4+T;. Here ¢is the diclectric constant, N = N n—Ng,
where Np and N4 are densities of donor and acceptor ions respectively, J,, and
Jp are the electron and hole currents, g is the charge on the electron, 4, and
Hp are the electron and hole mobilities, which are non-negative slowly varying
functions of Vi and N, and R is the net recombination. D,, and D, are the
electron and hole diffusion coefficients for which we shall assume the Einstein
relations D,, = unUr, Dp = p Up, where Up is the .thermal voltage. In
addition, we shall assume that #p and p, and hence D,, and D, are constants,

We shall next exhibit more explicitly the singularly perturbed nature of these
equations. To do this we transform them following the approach used in [101.
Let £ be the characteristic length of the device under investigation (for example
the length of a diode). Define scaled versions of the variables by

¢ n P £Jy J, N
s == T, g = = 33—:—,J = e :-"““——_—_-,Dt"':*,
VSl M P T DN’ "~ DN N
(1.6)
here N ;= ;
where (m,;)Tésar;(uanlN(x’ y)| and
=% ., =¥
xs = e’ y& e‘ . (1.?)
Then, on dropping the subscript s again, (1,1)-(1.5) become
XAy =n—p— D(z,y,\) (18)
Jp=—nVip+ Vn (1.9)
Jp=—(pV Y+ Vp) (1.10)
V- Jn, - ﬁns(n:p)'Y)‘) (111)
Ve Jp = —B,8(n,p,7)) (1.12)
with
Ap\? U yn; e %
Azx(—ﬂ 3:_62__3;} 723q :ﬂnzw“_—: ﬂp:"_"
£ 2gN eUr Doy Dprp

Here Ap is the minimal Debeye length. It is worthwhile to note at this paint the
relative magnitude of the terms appearing in (1.8)-(1.12). For a silicon device,
with £= 2.5 x 1073, at room temperature T = 300K we have

] .
A 04x107°% 4w B, ~ 8, & 0.25.
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The singularly perturbed nature of the Poisson equation (1.8) is immediately
obvious and becomes more pronounced as the maximal doping N increases.

It is normal to postulate jump discontinuities or exponential layers in the
doping profile D. Under these conditions the potential ¢ also exhibits an expo-
nential layer of width O(AjIn X|). The exponential decay is perpendicular 1o the
Jjunction and at a rate proportional to 1 /A. The electron and hole densities n and
p cxhibit similar behavior. The normal components of the currents Jn and J,
do not however exhibit such layer behavior,

We remark that a number of altemnative formulations may be used for (1.8)-
(1.12). We shall restrict ourselves to considering those for the hole current p It
is clear that (1.10) and (1.12) can be combined to give :

Ve (pV + Vp) = 8,8 =: f. (1.13)
This may also be rewritten in the Slotboom variable v = e¥p to give
V(e ¥y) = f. - (1.14)

We shall encounter all these forms in the context of the derivation of numerical
schemes in later sections. _

Before proceeding to consideration of difference schemes for the continuity
equations, we shall first outline how these may be derived by a conservation law
argument. This will provide motivation for some of the later finite difference
schemes. _ ‘

We shall first assume that the average drift velocity of holes vp is given by
Vp = ppE where E = —V1 is the Electric field. Now consider a region K with
boundary 3 K. The total charge in X due to holes is given by [ gp, and the rate
of flow of electric charge due 10 holes across d K is given by ﬁ i Jp - #1, where
Jp is the hole current density. Thus rate of change of charge in K is the sum of
the flow across the boundary and the rate of loss of charge due to recombination
of electron hole pairs, — f,_ qR, that is

d . / , /
— | gp="~ Jp-fi — gR.
dt Ve oK | K

Using the Divergence Theorem we have

! / /
i —- T — R.
7 qu KV »—q p

The steady state version of this is

/‘Vojpz—q/ R (1.15)
K K
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which is just the integral form of equation (1.5).

2. One Dimensional Analysis
We now consider the solution of the hole contimity equation

V- (pVi + Vp) = BpS =: f. (2.1)

For clarity we initially consider only the one dimensional case.

It is well known in the literature (¢f. [16]) that straightforward application of
a standard difference scheme leads to numerical instability. To see this, consider
the discretization of the one dimensional analogue of (2.1)

2L+ 2y = 1(2) (22)

using a centered difference approximation for the derivatives.

Writing this in matrix form it is clear that the matrix of the scheme is not
an M-matrix unless h is small compared to the scale of variation of ¢. Hence
inverse positivity and stability are not guaranteed. In practice the scheme does
exhibit instability, giving rise to “wiggles” (¢f. [8]), unless the mesh spacing h
is chosen unrealistically fine. The problem here is violation of the well-known
cell Reynolds number restriction which requires that:

max g1 — ¢l €2

It was to remedy this instability that Scharfetter and Gummel proposed their
modified difference scheme in [16]). We first outline that derivation and then
examine alternative approaches including those based on exact discretization of
(2.2) using guadratures.

2.1. Scharfetter-Gummel Derivation
Consider the one dimensional analogue of (1.10) and (1.11), that is

g (2.3)

dy
Jp=p o+ d—m. (2.4)

Now discretize (2.3) by the standard scheme

Jpivyj2 = Jpi-1z L
(hs + his3)/2 fles), (25
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where h; = 2; — x;—;. Rather than discretizing (2.4) using a standard scheme,
which would give rise to numerical instability, assume that Jp 1s constant and 1
is linear between mesh points and solve (2.4) explicitly as a dxffercntxal equation
for p. Note that the assumption that + is linear means that -50— ig constant and
(2.4) is thus a constant coefficient differential equation. Cons1dermg the interval
[z, ;4] we obtain

dp{z) ¢, Wi
dz t: T plz) = Jpity/a (2.6)

subject 1o
P(fl?;‘) = Pi, P(mﬁ-l) = Diti.

Applying an integrating factor e(¥+1-¥i)(3==)/hir1 and integrating from z; o
Tit1, if Y1 7 1, we obtain

i Fit1 Bidam Vi, g
etid1 \b'pin{*l—'Pi me,i—{—I/Z‘/ e M1 dz

T

h; b
¢ +;+1¢‘ (e\b.-{—l 0 I)Jp,€+1f2'
Thus
¢1+1 - ’wb: Pi+1 : P
S Sl by T e Rl g Ty (2.7)
On the other hand, if v, ; = 1, we oblain
Pivt — Pi
) Y . s . 2.
Jp,l-{*l/? hi+1 ( 8}

We may combine (2.7) and (2.8) by writing :

1 1
Jpivijp— Jpioij2= P [B(hi — Yig1)pit1 — B(dira — d)pil,  (2.9)

where
B(z) = 2-1’ B(0) =1, (2.10)

ez

is the Bernoulli generating function,

The discretization given by (2.5) and (2.9) is what has become known as the
Scharfetter-Gummel discretization. We remark that there were two fundamental
assumptions here,

i) J, 1s constant between mesh points.
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#) ¢ is linear between mesh points.

2.2. Box Method _ .
An alternative approach to the derivation of difference schemes arises from the
scaled version of (1.13) namely

d J
dmpdm: [Rf(m)dx.

R
Applying this on each interval T J2 Tit1/g] gives
Tig1/2 ‘
Jpavija— Jpi—1/2 = - f(z)de. (2.11)
Fi—1/2 -

Assuming J, is piecewise constant, we can use an integrating factor, similarly
to the previous case, to obtain :

I . _ ehipiy — et
PR TR A 0a

Now assuming t(z) is piecewise linear or approximating it by its linear inter-
polant, we again obtain (2.9). Thus this derivation gives rise to a scheme which
differs only in the handling of the right hand side term f(z). The two become
identical if we approximate the integral in (2,11) by

Zig1/3 f(g;)da: — _(Mé_{l_ﬂf(x;)

Ti-1/3

2.3. Exact Discretization

An exact solution of (2.2) can be written in integral form. To derive this we
rewrite the equation in the Slotboom variable v — pe¥. In this variable (2.2)
becomes formally self-adjoint:

d d
Lv = a(e_‘"&—:—:) = f. (2.12)

We may write the solution of (2.12) in terms of local Green’s functicns, that is

v(z) = vi—zr($)+v¢+13(:ﬂ)+fmi+l g f(Wdy, oy <z <2y (2.13)

Tim 1
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where r(z) and s(z) satisfy the homogeneous equations

Lr=Ls= 0
T(:E,'_l) = 1,r(:1:,-+1) = 0, .
3(2:,'_.1) - 0,3(m;+1) =1,

Solving these explicitly in terms of integrals we get

[re ¢(t)dt J7_ et

r(z) = mg;r m ‘(2-14)

and g;(z,y) is given by

1 f’" e’v”{t)dt 7 e Wdt,z ) <y <2< 449,
o) =~ g | [F O [ Oy <2<y <z
| / (2.15)

Substituting (2.14) and (2:15) in (2.13) and using it to evaluate v(z;) we get

[l et gy Jor e¥War

g = v,mlm + v, ’HTWZ

1 Ti4d v.b(t)‘ zi v o(2)
YTy e¥'tdt e dtf(y_)dy+

Fiml Eiwl
& Tit1 Lo} '
+ 1 e‘*b(‘)dt e*Wdtf(y)dy .

Converting back to the hole density function p and rewriting in thrce point dif-
ference form we get

1 i 1
NP S Y Y : #(=),,
f:_l Wit} dt € Ui (fx‘ i + f;‘;ﬂ e“'(‘]dt) € u;+

1 |
+ T et gy iy =
:c eVit) gy /;:,-..}_I f:c.'-u et g
f f:c: (1) (I)dz + . mf(x)dﬂ:
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Remark: This same exact discretization can altematively be obtained by integrat-
ing by parts the local relation:

(LO, ¢t) = (f’ 451'):
where ¢; is the L-spline generalized “hat” function :

fz ¥t

T§
e -1 ST S T

. oo Efaml
¢‘($) f¢i+1 RIOEN P
’=i+1 e'p(‘)dt’w'. ST T4
E4

This is essentially the approach taken by Miller in [13].

2.4. Approximation of Integrals by Quadrature Rules

It is, in general, impossible to evaluate the integrals in (2.16) exactly. However,
we can obtain a family of three point difference schemes by approximating the
integrals.

In fact, if we again assume that 1 (z) is piecewise lincar we obtain a scheme
whose left hand side is identical to the Scharfetter-Gumme! and Box schemes. It
remains to choose a quadrature rule to evaluate the right hand side in (2.16). If
this is chosen to be a trapezoidal rule we obtain :

fm,- f:e_1€¢(t)dt hi f;i:ll i gt f::_le.p(;)dt
Ti—1 J :’_1 Cd)(t)dt f(:t)dx - ? ‘;'—-1 C¢(t)dt ftﬁl + ‘;'_1 e\b(t}dt f‘

hi
”*"f"a_fi-

Similarly :
[mi““ Joiet g0y
x

e ST etdt

which makes the right hand side identical to that in the Scharfetter-Gummel
Scheme also.

We remark that it is clearly possible to obtain further schemes by using
higher order quadrature rules to evaluate the right hand side. These would be
similar to those derived in [12], using Marchuk identities. In principle it is also
possibie to assume that (xz} is merely quadratic or cubic rather than fincar. The
schemnes thus obtained would however involve more complicated functions than
cxponentials, which would render them impractical.

We now consider a number of finite element methods for the derivation
of schemes for the solution of (2.2). We shall confine ourselves here to the

f(z)dz ~ mfﬂf{

3

h
2
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one dimensional analogues of schemes on rectangles. In particular we shall not
consider methods dealt with elsewhere in this monograph.

We remark that as in the finite difference case the derivation of successful
finite element schemes will rely on certain assumptions to the effect that the
current J, is constant on each element and the potential ¢ is piecewise linear.

2.5. Hybrid Methods - Brezzi, Marini, Pietra

We first consider a hybrid method due to Brezzi, Marini and Pictra [3]. This is
obtained by writing (2.2) as a system of first order differential equations. These
are in fact the one dimensional analogue of the original equations (1.10), (1.12)
rewritten in the Slotboom variables v = pe¥, that is

duv

- = ¥ J, o (2.17)
%i;'z = f (2.18)
These may be subject to Dirichlet boundary conditions
v(0) = e¥94, (1) =B (2.19)
or mixed boundary conditions
v(0) = ¥4,  J (=0 (2.20)

For convenience we shall confine ourselves 1o the former. The latier may be
incorporated by the standard finite element approaches. We first derive a weak
formulation of (2.17x2.18). We define

Hy(0,1) = {y€ H'(0,1), y(0)=¢*4, 4(1)=¢"1B}
H3(0,1) = {y € H*(0,1), y(0)=y(1) =0}
Now multiplying by “test functions” and integrating we get

1 du 1
ST do = eV, rdr, ¥ re L?0,1)
¢ 4]

ld.]p 1 1
—L xdzr = [ xdz, ¥V xe& Hy{0,1).
o dz 0

On integrating the latter by parts we obtain
1 1
dJ, dx
L:ﬁwmmﬂﬂﬁiﬁ%ﬁﬁ

= T (1) = Ox(0) ~ | 5 s
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since x(0) = x(1) = 0. Hence the weak formulation becomes:
Find v € H} and J, € L2(0,1) such that

1 dv 1
f — rde m/. e Jy rdz, ¥re L0,1) (2.21)
0 dz 0
1 dX 1
—f Jp==dx =/ [ xdz, VyxeH01). (2.22)
0 dz 6

We now proceed to show that the finite element approximation of (2.21)
(2.22) proposed in [3] leads to a scheme which is similar 10 the Scharfetter
Gummel scheme. .

We now seek a piecewise linear approximation v* to v and a piecewise
constant approximation J:} o Jp. Define I; = (24, 2i41), I = Uf-‘_{}lf,-,

Vh={y: ye HL(0,1), yls, € P}, V= {y: ye HMO, 1), i1, € P},
Wh={y: y € L*(0,1), yl;, € B},

where Py and P; are the spaces of polynomials of degree 0 and 1 respectively.
Then the hybrid finite element approximation is:
Find v* € V*, J& € W" such that

1 dvh’ : o rh h
Omrdz: Oerrdm, VreWh, (2.23)
1 1 )
f J;*ﬂ&dx = f fxdz, YxeVl (2.24)
¢ dz 0

Let us now examine the discretization arising from this method. Let the
constant JE o = JP|; and let v} = v*(z;), and further let xi(z) be the
usuat “hat” function basis of V', that is xi(z;) = &;. Now v* & V", hence

do® - “? 1”““‘1,'& <
Gl = —EF and thus (2.23) gives

p L h Link 1 "
T
Similarly, considering the contribution of xi from (2.24) we get,

3 1
dxq
. 3 t
/Ofx,-dwkm[ Jp o dx

4]

i dx- Tig 1 dX
A h 1
=] pria Ao 2z %

. &Ly

_Jt.’fwi/z(xi(a;,-) - Xi(®ie1)) — inrl/z(x«;(zwl) = xi(zi))
= “‘jzfil/Q + Jf—u/w

(2.26)
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by the definition of ;.
Combining (2.25) and (2.26) we obtain

vk ] f
i ¥ ; d
f:i"” e¥dx fm' e'f’dx f X dz

or

1

1 1 i
h h h
. v, — - [ S— v + vl =
::?m; eVdy 71 (fm"_l evdr f:i,'“ e'o"da;) * ’:. ey 1

1
::f I x¢ dz,
0

(2.27)
which if we assume that + is piccewise linear again gives us the same discretiza-
tion matrix as Scharfetter-Gummel. Again note the key role the assumption that
the current Jp, was piecewise constant played in the derivation,

2.6. Finite Element Method — Zlamal

We now consider the finite element method derived in Zlamal [19]. Again the
assumption is made that J, is constant and ¢ linear on each element.

The hole continuity equation is formulated in the standard Galerkin manner
as & variational form in the Slotboom variables

1
f—';;(e "’dv)xdmmf fx dz, VY x€Hj, (2.28)
0

and is rewritten as:

1 1 :
(v, x) = —f e”‘bit—)-d—x—da: = [x dz.
0

0 dx dx
Now assuming Jh = e“"”‘i; Is piccewise constant and JP 7, = Jipqs,i =
0,-+, k, we dcﬁne an approximate form m; by:

k1 i+l ]

mn(¥;0,x) = Zji+l/2/ d—’:dz
=0 T
- (2.29)
=Y Jepryax(zis) — x(x:)
i=0

Zlamal then proceeds o determine an appropriate value for J;, j2 which is
consistent with the equation J = e ¥4 To do this consider interval ; where

dv
= =¢ YJiv1ys
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Titl oy Zipa
f_ E;dz"—“,/m‘_ e Jii12 dz

or, writing v; for v(z;) etc.,

and integrate

Til
Vipyp — v = £+1/2/ e¥dz, (2.30)
Xy
which is identical to (2.25). :

Thus, assuming that x; are the normal piecewise linear basis elements, that
is, xi(x;) = 8, (2.28),(2.29) and (2.30) will lead to a discrete system of the form
(2.27). Again Ziamal makes the assumption that ¢ is replaced by a piccewise
linear interpolant and thus we again get the Scharfetter-Gummel discretization
matrix.

In conclusion therefore we remark that all the schemes considered so far
are variations on the Scharfefter-Gummel scheme in that, under appropriate as-
sumptions, they all give rise to a discretization matrix which is identical to that
of Scharfetter-Gummel, They differ only in their treatment of the source term f
and the extent to which they can be generalized to higher dimensions.

2.7. Relationship with Classical Exponentially Fitted Methods

All the derivations considered so far have employed the physics of the problem
directly. Let us now briefly consider the formal application of exponentially
fitted methods (¢f. [4]) directly to (2.2). From an asymptotic analysis {10}, it is
clear that near an interface, at x = z*,

W) (2 A) < o1 + A~k Yy (2.31)
and that %ﬂ is O(1} elsewhere. Thus multiplying by the scaiing factor A we
get an equation in singularly perturbed form :

L0820 L 0 8p(e)) = as(a).

We now write b(z) = A%, 10 give

LO0IE, (@) = 1), (2.32)

anid note that the resulling equation is, in practice, a mildly semi-linear singularly
perturbed equation in conservation form. Further |[b(z){lee € C, where C is
independent of A.
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Let us now consider a standard exponentially fitted scheme for this equation
[5, page 1071 .
S(Aovdpl + M upl) = Afh (233)

where

bu = L2 Fima)2 _ Figifat Zi_i/2
2 = y HE = )
Tivif2 — Ti—1/z2 2

o _ ,b?+1/2hi+1 ¢ b?,{.l/ght'*i-l
i+1/2 = o) co o\

We remark that this scheme preserves the conservation form of (2.32). The
proofs of uniform convergence in [5] do not, of course, apply in this.case, since
they require the coefficients to be smooth — in particular b(z) € C?(1).
We will now show that this scheme, with an appropriate choice of bf‘H 2
is in fact the Scharfetter-Gummel scheme. First note that (2.33) may be written
as :
Kivij— Ki12

(hi + hiv1)/2

=Afr - (2:34)

where
Kiv1/2 =X 0iv1/2 60l1pg + Byapo #Pla (2.35)
It is clear that (2.34) is in the same form as (2.5) and can be made equivalent by

an appropriate choice of fF. It suffices to show therefore that (2.35) is equivalent
to (2.9) for an appropriate choice of b, sz Let us choose

dy(z) Yigr— i
Haivsje) = A5 lei 10 ™ )‘"“““;;:“1‘— =: b1y

Notice that this is exact if ¢(z) is piecewise linear. Now, since

z z z z z z
—coth = = - - = B{~2) ~ =
g T ooyt = B 5 =B(-9) -3,
we have
A Pip1 ~
Kip1pe = W [(B(¢i+1 - )+ “‘fl—z"jb“') Py — o)+
1+1
n h
Dis1t+ P
+ (g1 — ;) (__—1;1_2_)} =
= A[B(h: ~ ¢i+1)P?+1 = B(it1— ¢£)P?]/h£+1 = Adpiti/z

which shows that (2.33) is again the Scharfetter-Gummel scheme.
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2.8, Uniform Convergence Results

it is only in the one-dimensional case that researchers have been able to prove sat-
isfactory uniform convergence results for discretizations of Scharfetter-Gummel
type. In [10] and [9,§5.3] the error estimate

max (|p} — plai; N)| + [Tftic1j = Jp(@ic1ai N]) < K (h+ A|In A])

LS

is established (with a constant K that does not depend on A) for the scaled
one dimensional equation (2.2) subject to either the Dirichlet or mixed boundary
conditions corresponding to (2.19) and (2.20). Here A is the singular-perturbation
parameter from (1.8) and the scaled potential ¢ is O(1) with a finite number of
internal layers z == z* at which it satisfies (2.31).

The analysis uses explicit representations for the solutions of the difference
equations and singular-perturbation analysis to justify estimates like those on Y
above. It is indicated that the analysis can be refined to the point of indicating
that truly O(h) convergence is obtained “away from” the layers of 1), but that the
scheme cannot be expected to uniformly resolve the concentration and current
near points like z = z*. As far as we can tell, this has always been believed to
be the case. :

It has only recently been established, by Gartland [6], that the one di-
mensional Scharfetter-Gummel discretization is truly uniformly first-order accu-
ratc under assumptions that encompass the situation analyzed by Markowich,
Ringhofer, Selberherr, and Lentini cited above. In fact, therc is a natural way
to extend the computed discrete approximations p# and I /2 10 @ global
approximation, for which is established the bound

max{|[p ~ p*|lco, 1p = Jgi]m} < Ch,

where the constant C' is independent of A, Here A is the maximum spacing of a
not-necessarily-uniform mesh (with no other restrictions on it).

The only assumptions required of ¢ and f are that the norms Hlleer 117115
| flloo+ and || f'[|1 be bounded independent of X; this includes the (realistic) cases
where ¢ has a finite number of internal layers of the form (2.31). The global
extension of p% is accomplished via a local cxpoenential interpolation formula;
whercas J:,‘ is extended to be piecewise constant. The analysis is broken down
into two parts: the first, a sensitivity analysis of the solution operator with respect
to replacing ¢ by its piecewisc-linear interpolant, and the second, a standard
consistency-and-stability argument to bound the “quadrature” errors incurred in
discretizing the fatter problem (with its piecewise-lincar potential). The details
arc in [6]. This gives a theoretical quantification (at least in the one dimensional
case) of the “robustness™ of this widely used discretization technigue.




8-G discretization of continuity equations 65

3. Two Dimensional Generalizations of Scharfetter-Gummel

We shall now proceed to examine a number of generalizations of the Scharfetter-
Gummel method to two and higher dimensions. We restrict ourselves to those
methods defined on rectangular meshes.

It is clear that to derive two dimensional analogues of the Scharfetter-
Gummel scheme we shall have to make assumptions, similar to those made
in the one dimensional case, conceming the behaviour of the hole and electron
currents J,, and J; and the electrostatic potential 1.

If we make no such assumptions we can of course write a solution of the
continuity equations in exact form as in the one dimensional case. However, for
the hole density p this would be of the form '

plz,y) = /a Kz g3 6 mipls,n)do + f f 9(2,95 ¢,m) (5, n)dgdn.

We do not however have explicit forms for the kemels k& and g. E is clear that
the value of the solution at the center of a rectangular cell (for example) depends
on the values on the enfire perimeter; therefore exact 9-point schemes cannot, in
general, exist.

3.1. Box Method

The simplest approach to generalization is to use 2 Box method (¢f. {18]) to
derive a finite difference scheme. This was essentially the approach used in
[2,1]. This has some physical justification moreover, since it corresponds closely
to the (integral) conservation law form of the problem given by (1.15).

To be more precise, substituting (1.10), we obtain

LV-(Vp+pV¢)=/}3f.

Now applying the Divergence Theorem we obtain

LR(Vp-f;pw)-ﬁ:[Rf. (3.1)

To derive the difference scheme we now apply (3.1) to a box

R= {xiwl/z,-'ﬂeﬂ,'z] X [Uj—uz,yjﬂ/z}-

Firstly, approximate | r by fig* area (R) thatis

f f dr = fi,j B._-?EJ-
R
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where hi+h ki +k
¥ i+ higy 5 Ky 43
g = L iEY PR M Mt Jn
2 3 2
Now

/;R(VP+PV¢) <Al = _/; (Pa: +p¢'a:) + '/; (Py “{“P‘!}y) +j; (_Pa: - p¢m)+

+[ (—=py — Py),
Fy
where I'y,T'5,T'5,['y denote the “east”, “north”, “west” and “south” edges of
dR. Now approximate the integral along each edge by an average value of
Jp = ps + py, along the edge times the length of the edge, for example,

Jp x length (T'1) = J,k;.

It remains to choose an appropriate value for J,,.

We must once again make a simplifying assumption — in this case that
Jp = pz+pi is constant along the mesh lines connecting (z;, y;) to the adjacent
nodes. But this is precisely the same assumption as in the one dimensional
Scharfetter-Gummel derivation and solving the equation, for example on I'y,

Pzt p = J, Iy < T < Ty
plz:) = pi, P(Tit1) = Pis1
again yields _ 7
e¢i+1,;‘p‘.+1‘j _ e'ﬁi,jpi,j
f::i_"""l g‘l’(m:yj)da;

To evaluate the integral in the denominator, we must either assume 1 is piccewise
linear or approximate it by its linear interpolant at (z;,y;) and (zi41,v,), in
which case we obtain

@ (AT W .
./. ﬂ =) dy = {hﬁle"biﬂ,j—fb-’.j o W dirsg # i

€Ty hi-{—le#)i'j; if 1!"('{"1,3' - 11b1',_?"
Thus we get a scheme which is a natural generalization of Scharfetter-Gummel:
Bty ~ thipy s B ;i — th; Blthi 1 i — e -
(’l,b i ¢‘+1,J)pi+1,j + (1,[) d ¢‘,J+1)P{,j~§»1 + (¢t 1,7 ¢"J)Pim1,j+
h,’.{.l k€+1 h'i
4 Bug-y - Vi), e Bl¥irs,g ~ ¥is) | Bldiges —vhig)
k; ’ hiti ki
N Blthi-1,; ~ ;) + B, j-1 — i5) pig =
h,‘ ki
= ?‘ii’j fig
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where B(z) is the Bemnoulli generating function defined in (2.10).

3.2. Finite Element Derivations
We shall now consider some finite element derivations. We shall mainly confine

our atiention to derivations on rectangular regions,

3.2,1. Zlamal’s Method

In {19], Zlamal considers solution of the semiconductor equations in two and three
dimensions. In the former case the methods use piecewise bi-linear polynomials
on four node isoparametric elements,

We consider the solution of (1.13) subject to a mixture of Dirichlet and
Neumann boundary conditions on 80 = I't U T2 that is

e T (3.3)

Let us deﬁ_ne , .
H={ve B'(Q), vjm=0).

Then, once again using the Slotboom variables and integrating by parts we obtain
the following variational formulation :

jrr('d);v,}c)&fnfx, V x € Hy, (3.4)

where

(v, x) 1= /r;e_"['Vv «Vyx = '/n Jp - Vx. (3.5)

Zlamal considers a partition into arbitrary triangles or quadrilaterals and, in order
to proceed further, must map these onto a reference element, which is either a
triangle or square. In order to simplify the notation and extract the essential
details, we confine ourselves to consideration of a cover Ry, of €1 by rectangles K.

Let hye = diam (K), h = max hg, Qp = ng K and T, = 90y, = TLUT2.
k
We shall seek an approximation P to p in the space
V= {v e %), vk bilinear }.

We shall use the test space

Vi ={veV*, Vi =0}
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In order to construct a discrete analogue of x(4);v,x) we require that the ap-
proximation J* 10 J;, = e"¥Vv be constant on each element K. Thus

Vv = e‘bJ;‘. (3.8)
Consider an clement K ; = [2,iy1] X [y;,y541), and let J¥ |k, . = J. Then,

on K; ;, (3.6) becomes
Vo=e¥J

-« e

or

Now integrating the first component of (3.7) from z; t0 z;44, along y = Yy We
obtain '
Tigy .
v(zig1,y5) — v{@i,y;) = Jlf eV (@) gy
Ty

Thus

I = ”(mi+1>yi) - ”(mi:yj)
Wi

punt f:vg+1 e‘!’(‘”’yﬁ')da‘ (38)
Similarly, integrating from y; to y;1, along = = x;, we get
Jg = v(@:, yi+1) — v(@i, ¥5) (3.9)

fyl;j+l e‘b(zf,y)dy

Now consider the approximation v* € V* to v and assume further that ¢ is also
in V*. Note that this is consistent with t being a piecewise bilinear solution to
the Poisson equation determined previously or simultaneously. Then, substituting
v* for v and using the bilinearity of 4 and v, we obtain

h —nh
Jy = Jertg T Yy Yiv1,5 — Yiy
hi—!—l ePiv1,i — e¥i,5

’ th —vi g .
=t B{thir1,; — i), (3.10)

where B(z) is defined in (2.10). Similarly,

avh —afi
Jo = “‘(‘9;- e T B(¢s’,;’+1 - ¢i,j)- (3'11)
Now, combining (3.7), (3.10) and (3.11) we obtain
Ji ~ij (B(ﬂl’iﬂj—iﬁij) g ) h
= Fr ' ! \Y
<J2> ¢ 0 o B(¥ig+1 — i) v
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or
J = ¢ ¥x pEygyh (3.12)

where BX = dia.g(B(\b.-.;_l‘j o 1,[){,3’),.8(1,!)"‘3’4.1 - '.bi,j)) and 1,{)}( is the corre-
sponding value of ¢ at the south-west cormer of K, in this case ¢ ;. In order
to define the discrete analogue of x(t);v,x), let us first define Xi,;(x,y), for
x;,y; € (g \ '}, to be the usual two dimensional “hat” function basis element
for Vi, which satisfies xi,j(ze, ym) = Siebjm. Thus the support for x; ;(z, y),
which we shall denote by S; ;, is just the four elements containing the vertex
{zi,y;). Now, for convenience, assuming {2 = (1,

750, X1,5) = E[ Jp - Vi g
< 'x

Since the only non-zero contributions to this come from S; ;. the support of
X:,7(%,y), we define the discrete analogue of x{s};v, x) by

”h(‘rf);v’xi,j): E LJP‘VX€,J'

Kes;
= z e_"[”‘/ BKVvh-Vx;,J-.
Ke&S; 4 X

Now, let g be the number of nodes in 0, \ T'}, then there exists a basis of V&
consisting of ¢ functions of the form x; ;. For convenience let us denote these
as Xk, k = 1,--+,¢. Then for any element x of Vi , x = 37 . x*xx(z,y) and
we define .

q

Wh(‘tb; v, X) - Zxkﬂ-h(\b; U:Xk}- (3'13)

k=1

We remark that the form m, is symmetric with respect to both v* and x; ;.
As shown in section 2, it reduces to the Scharfetter-Gummel discretization in
one dimension. Zlamal shows that the solution of the discrete problem exists, -
under certain consistency assumptions, A maximum principle is also proved for
rectangies, parallelograms with diagonals making angles not greater than /2
and acute triangles.

The procedure for obtaining the approximation to J, given by (3.10) and
(3.11), may alternatively be considered as replacing e¥ by an inverse average
type approximation along element sides. Further analysis of such schemes is
given in {11].
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3.2.2. Hybrid Methods — Brezzi, Marini, Pietra

We shall consider a class of methods proposed in [3]. Previous methods such as
those discussed above use some harmonic average on suitably chosen lines, for
example boundaries of the clements. In order to evolve a method which is less
one dimensional in nature and more amenable of analysis, Brezzi, Marini and
Pietra propose discretizing the continuity equation by a mixed or hybrid method,
which effectively uses a harmonic average of e¥ over the whole element. This
permits a more standard finite element analysis of the scheme.

The first method they propose is a hybrid method on triangles and rectangles.
The derivation and analysis on triangles is significantly simpler in this case and
we shall consider it first. As above we assume that there is a mixture of Dirichlet
and Neumann boundary conditions satisfying (3.3). We define

Ve={vel@), yro=p ,  Vo={yeo'(n) ylr, = 0},

W={y: vell’@),

Again we rewrite (1.10) and (1.12) in the Slotboom variables y = pe? and derive
4 weak formulation:

Find v € V and Jp € W such that

/Vu-r =fe¢Jp~r, VreW (3.14)
1 1

—pr-Vx:/fx, VxeVs (3.15)
0 0

We now seck a piecewise linear approximation v” to v and a piecewise
constant approximation .f;‘ to Jy,. Let Ty, be a triangulation of 3 and define the
spaces

Vi={y: yeVs, ylreP ,VTeT),
Ve ={y: yev, vir€P, VT €T},
Wh={y: yeW, ylreh,VTeT),

where Py and P are again the spaces of polynomials of total degree O and 1
respectively. The hybrid finite element approximation is then given by:
Find v* € VR, J» € W" such that

vah-TZfe¢J£‘-r, VreWwh (3.18)
{1 )

./;]JS-VXmLfX, ¥ x eV (3.17)
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In practice, one normally assumes that 4 is piecewise linear so the computations
in (3.16)(3.17) can be performed. _
We now define a piecewise constant function 1+, satisfying

eﬂT:f /T, YT €T (3.18)
T

Substituting (3.18) in (3.16) and considering 1i1 and 1; 4 defined by

Tialry = (1) o malovn = (0),
£l 1 0 1 [ 4 0
0 0

Tzl = (1) »  falovn = (0),

we obtain, for k = 1,2,

Z f Vvh-'r‘-'kz Z / e,‘bJ:,‘;r,-'k.

T;€Th Ty T;E€Th T;
Now, using v*|r; € Py and J®|7, € Py, we can rewrite this as
Z Vvh-r‘-,k/ 1 = Z.J;‘-r‘-,kf e¥
TiETH T TET) Ty
or, recalling the definition of #; 1 and 7; 5,
Vvh |T,| = J;L/ 6"(,,
. T'_
which is just
Vo = J;‘e'p. {3.19)

Substituting (3.19) into (3.17) gives a new conforming discretization of (1.13),
which uses the harmonic average ¢¥ for ¢¥ rather than the usual one:

/

e'I’Vvh-szffx, vV x eVl (3.20)
Y} ¥

In practice, since 4 can be large, ¥ can give rise to overflow problems on
a computer. Therefore it is standard practice to revert to the hole density p,
obtaining the scheme:

f et Vit ph)l mef fx, Yxevd. (3.21)
1 ¥
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where 2! denotes the piecewise linear interpolant 10 z at the vertices of the
triangulation Tp,. It is shown, in [3], that the discretization matrix of this scheme
is an M-matrix provided that all the triangles are of weakly acute type.

The equivalent derivation for rectangles or squares does not lead to a single
conforming discretization similar to (3.21). Instead we must eliminate J:,‘ from
the system of equations by static condensation. The resulting matrix will however
be a symmetric positive-definite M-matrix.

Brezzi, Marini and Pietra also consider Mixed-Methods on triangles and
squares. These differ from the previous approaches, particularly in that they
seek piecewise linear approximations to the hole current J, and only piecewise
constant approximations to the v = pe¥. To be more precise, in the case of a
triangularization T, of 2 define : '

RT(T) = {z = (21,22) : 21 = a+ bz, 253 = ¢ + by, a,b,c € R}
and |
Wh={z: ze[L¥Q)? V- 2z e L¥}0),
" z-A=0 on Ty, zjr € RT(T), VT €T},
Vh={z: zeL?*),, z}TePO(T),VTén}.

The mixed finite element approximation is then given by:
Find v* € V*, J* € W such that

fe‘bJ;L-rw_/thor+f xr-f, VrieWwh (3.22)

Ya a1 Vg o
/V-J:;gﬂw/fgb, ¥ ¢ e V. (3.23)
a Q

The resulting discretization matrix is symmetric, but is neither positive-definite
nor an M-matrix. Further it is not possible to eliminate J:,‘ directly by static
condensation. It is however possible to produce an “extended” discrete problem,
which afier application of element-wise static condensation twice, leads to a
symmetric positive-definite M-matrix, provided that the triangulation T;, is of
weakly acute type. A similar derivation can be performed on squares.

3.3 Convergence Theory in Two Dimensions

The convergence theory for two and higher dimensions poses si gnificantly greater
difficulty than in the one dimensional case. The authors are unaware of any uni-
form convergence results in the literature comparable to those discussed previ-
ously for the one dimensional case. In fact most classical convergence resulis are
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unduly pessimistic in the sense that, in practice, the Scharfetter-Gummel scheme
and its variations approximate the true solution under much less stringent as-
sumptions on regularity of the solution and fineness of the mesh. :

The most satisfactory analyses appear to be those using the finite-element
formulation. However classical finite-¢lement proofs do not tend to yield uniform
convergence results. This is consistent with experience elsewhere in the analysis
of numerical schemes for singularly perturbed problems. For example, Brezzi,
Marini and Pietra {3], employ standard techniques but establish error bounds only
for the current approximation in their hybrid and mixed methods. These are in
a weighted L2-nomm given by :

a(J,7) :mf Jore? |, ¥V J,re [L3HO)P,
a

[17lla = a(J, 7)*/2,

They bound [[Jp, ~ J}{[4 in terms of certain other projections of J, onto W,
These are somewhat technical to describe, and the results are still deemed “un-
satisfactory” by the authors in [31]. ‘

In [14,15], Mock analyses a class of finite-element methods on triangles and
quadrilaterals, which includes Scharfetter-Gummel type schemes. The aim of the
analysis is to show that, under realistic assumptions on the physical entities, the
schemes are convergent. In particular, he avoids assumptions on the variation of
p v = pe¥, and e¥ between mesh points. He assumes only that Jp and some
functions of the right-hand side f are approximated accurately on the mesh. The
method involves writing (2.1) in the mixed form in the Slotboom variables and
using a special formulation involving stream functions and a function space of
“pipes”. This is necessary, since v varies rapidly near interfaces and cannot be
approximated accurately, on a coarse mesh, from a space of piecewise polyno-
mials. Mock concludes that only variations in Jp and f have to be resolved by
the mesh in order to obtain reasonable discretization errors.

In [11], Markowich and Zlamal consider a generalization of the method in
[19] using piecewise linear trial and test functions on a triangular mesh of acute
type satisfying a minimum angle requirement. The assumptions made are that 12
has a polygonal boundary 3Q = I'y + Iy, with Dirichlet conditions on T'; of the
form pip, = p*, where p* & HY(Q) N C(I'y), and gﬁlpn = 0. In addition, it is
assumed that f ¢ H?(2) and that

—oo<.1,b_§1,b_§g5<oo.

Under these assumptions they derive a bound on the nodal error in the H'-nom
for the error in approximating the hole density p. To be more precise, they bound
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the difference p! — p* between the piecewise linear interpolant p of p and the
discrete solution ph :

K aJ,
17 = e < 55 (K1 IG21 o+ 90 )

where |%2| is the Jacobian of J,, b = maxper, diam(T), and K depends
only on the minimum angle of T;,, on 2 and on I';. This does not translate
however 1o a similar bound on {|p ~ p?|| H(q), since the inverse average finite-
element method used only depends on the values of + along the element edges.
Nevertheless this is a uniform nodal approximation result of a form familiar from
the singular perturbation literature and moreover it is shown under reasonable
assumptions on J,. Markowich and Zlamal also derive an L2-type estimate on
the approximation of the current Jp. They remark that in this method the current
on a triangle T € Tj, is not uniquely defined. This holds, since J* is ¢lement-
wise constant and any of the three values at the vertices J:’;"',,-,i =1,2,3 can be
regarded as the appropriate approximation, in the sense that:

1/2 _ . '
(Z L1, - J%,,-l") < 5 (A1 52 et e )

TET)

e

They also show that the error in the outflow current at a contact is bounded in a
similar manner.

The only convergence analysis of the full nonlinear system (1.8)-(1.12), that
we are aware of, is given by Jerome and Kerkhoven in [7]. Tt uses a calculus (de-
veloped by Krasnosel'skii and co-workers) for fixed points of nonlinear operators
and their discretizations. The main thrust is to verify a nonlinear approximation
theory, in the energy norm, with convergence rates keyed to those in the linear
theory.

3.4 Numerical Results

We shall conclude by presenting some numerical results and observations. We
shall consider the same test problem as in [3], that is;

Lp:=V - (Vp+pV¢)=f, inQ
' p=yg, only
(Vo+pVe)-A=h, only

where the domain Q2 is the unit square and f. g. and h are given functions.
Farther assume that T')y N Ty = ¢ and Py Uz = 80 Here T'; represent
the ohmic contacts (sources, drains, etc.}, and, with A = 0, Iy consists of the
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insulation contacts. For the specific example in the illustrations we assume that
the boundary conditions on I'y are given by :

B, =0 y < .25

_}3 =< .25 y=20
pla,y) = 0, z=1, y > JI5°

0, 22> .7, y=1

Fig. 1: Scharfetter-Gummel, s = 1/8, k = |

We shall, in addition, assume that the electrostatic potential ¢ has been
calculated previously and is given by 4(z,y) = 10~ %y (z, y), where ¢z, y)
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is given by 0 o <
’ <r <.

tolz,y) = {2(r—- 8), 8<r<.9

2, Sy '

where r := /22 + ¢2, and k = 0,1, 2. Itis clear that we may alter the steepness
of the gradient of ¢ in the layers by adjusting k.

We shall now solve this problem using a Scharfetter-Gummel discretization
on a rectangular grid. The results are illustrated in figures 1, 2 and 3.

Fig. 2: Scharfetter-Gummel, s = 1/16,k = I

Since Scharfetter-Gummel is an exponentially fitted method we expect that
it will provide qualitatively correct results even on relatively coarse grids. This
proves to be the case. It should be noted that it is not necessary to refine the
mesh in the neighbourhood of the layers. This is, as remarked in {107, in contrast
to the solution of the Poisson equation for ¢, where refinement of the mesh is
required in addition 1o exponential fitting.
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We remark that the Scharfetter-Gummel scheme is formally second-order
accurate in the L?(f2) norm. An examination of the errors for various numer-
ical test problems reveals that this order is indeed achieved provided the true
solution has sufficient regularity—it is required that u is in H2(02). However for
problems with “realistic” boundary conditions, a lesser rate of convergence is ob-
served. Table 1 below contains the results of numerical simulations on three test
problems. Problem 1 is precisely the problem described above, whose approx-
imate solution profiles are pictured in Figures 1, 2, and 3. Problem 2 is a very
similar problem; it differs by having Dirichlet boundary conditions all around,
however these are constructed to have a “square-root” singularity identical to that
of Problem 1. Problem 3 has “smooth” Dirichlet boundary conditions.

<. Hig. 3: Scharfetter-Gummel, k= 1132, k= |

The true solutions for these problems are not known; the errors were es-
timated using extrapolations on three consecutive mesh refinements. The third
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problem indicates the expected second-order convergence for smooth solutions.
The exact solutions of the first two problems are only in H3/2(12), and the ex-
hibited convergence rates are O(h) and O(h%/?) respectively. Both problems
suffer degradation due to the lack of regularity of u, and in addition, the order
of the approximation associated with Problem 1 is lower than that suggested by
standard approximation theory. To our knowledge, this is the first numerical
itlustration of this particular phenomenon.

Problem 1 Problem 2 Problem 3
h lie*lir.2 P ll€* .2 P lle"[ln,z P
1/4 L10¢-1) .80 43(-2) 1.55 20¢-1) 2.17
1/8 S54(-2) .99 - 15(-2) 1.54 A5(-2) 2.06
1/16 27(-2) S1(-3) 162

Table 1: Errors in the discrete L? norm
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