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Abstract:- We shall discuss a number of methods used in the lit-
erature to calculate rates of uniform convergence. We mention some
anomalies concerning interpretation of the resulting tables and rates,
which lead o the determination of experimental rates of uniform con-
vergence lower than the correct rates.

Introduction

The determination of the order of uniform convergence is not al-
ways a straightforward fask. A number of approaches exist in the
literature, the two major variants being that appearing in {6} and {3}
and that in [2].

The former approach invelves solving numerically a singularly per-
turbed differential equation on [z, zg] for which the analytic solution
is known. The difference equation is solved for decreasing values of
and the rate of convergence caleulated from

ph = (Inedf ~Ineh)/In(2) (1)
where
eilc = Orsnx?f'\f Ih’.? = uﬂ('ri)l| h= [I"L - zRillN' (2J

The equation solved is chosen so that the solution and its deriva-
tives exhibit exactly the analytic behaviour hypothesized in the proof
of the error estimates. In practise this is achieved by choosing a solu-
tion and then determining a differential equation of the correct form
which this satisfies.

The uniform rate is determined by Inspecting a table of values
of ph, for varying h and ¢, constructed by setting € = h* for various
values of 5. Results of this form are given in [6] for a non-turning point
problem and in (1] for a turning-point problem of the type considered
in {3, 4]. In the case of the turning-point problem the choice of solution
invelves making the boundary values functions of ¢ and hence by the
cheice of € = A* functions of h. A disadvantage of this method is the
requirement of prior knowledge of the solution since this limits the
ease with which it can be applied o other problems. An alternative
is, of course, to use an accurate approximation on a fine mesh, if this
is determinable.

The Double Mesh Method

The method proposed in [2] is based on a consequence of the Gen-
eral Convergence Principle which states

Theorem ({2, Thecrem L5.1})

Let u, be the solution of a differential equation and uf a difference
approzimaiion. Let p > 0 end €y, Cy be positive constants indepen-
dent of h. Then, for alli2 0, alid < b < by, and all e > 0

fuc(as) = ufi < Ci?
iff
) Jimfude) - ubl =0
i) |ut — ul < CohP,
Furthermore. Cy is independent of ¢ iff Cy is.

Essentially the method involves calculating the guartity given in
(ii) which we shall call the double mesh error €%, and determining a
rate of convergence

pﬁ( = Uﬂ 8?{? —In eﬁe)/ §n(2) (3)
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where

S = max [ —ull, k= [og - am)/N. (4)

0<i<N

The experimental uniform rate of convergence is then determined as
p=minps where py = average, pft . (5)

Doolan, Miller and Schilders remark that the chaice of the range
of ki values permissible is limited, since if the mesh is too coarse the
solution of the difference scheme is not sufficiently representative of the
solution of the differential equation to permit meaningful discussion of
convergence, that is h is not sufficiently small, whereas if it is too fine
then rounding error predominates. The method has the advantage that
It requires no a priori knowledge of the nature of the solution of the
equation and may be easily programmed to determine an experimental
rate of convergence for a wide variety of problems.

Anomalies

In either of these methods however, great care must be taken in
interpreting the table of values of p? or ph, for the reasons which we
will outline below, To simplify the arguments we shall consider only
the rate of convergence, for a non-turning point problem, as considered
in [6], that is :

0<z<l
u(l) = B,

ea’ +alziu’ ~ Wzju = f(z),
(0} = A,

wherea(z) 2 4 > o > 0. The determination of the rate of convergence
depends on the assumption that

< CW (6)

where C'is independent of h and €. This is not necessarily the strongest
bound available and in fact the following one, ( f. [6]} , iz a more
accurate estimate :

ek < C{-—h—z— 4 ﬁe""’}‘/‘} = C'h(——wﬂ-- + pe™?") "N
e Ade ¢ 14 p ’
where p = h/e and a > 0. So more accurately
eec < Clp,a)h,

which Is not inconsistent with (6) since by considering the limits as
p—+ 0 and p — oo, for o« fixed , we can see that C(p, ) is bounded.
Let us assume that equality holds in (8) and determine the rate of
convergence p%,. Thus

(2p+ 1)~ + e72e

= —
p‘:—pee(P) =ln|d (,0+ l)_l 1 gmap

/1n(2) (8)

and considering this for ¢ — co(p — 0) and ¢ — 0{p — o0) we get

lim pf =1,

lim p? = 2
P+ I € ' P00

Thus, if we determine the rate of convergence p2, for fixed A, and
¢ varying from oo to 0, it will vary from 2 to 1 as expected. The
assumption we implicitly make in evaluating computational orders of
convergence is that pf is monotonic and hence that the minimum value
Is 1. This is not in fact the case as the function p? given by (9) may
attain 2 minimum less than 1. This may be seen in Fig. 1, which is
a graph of p? for & = 0.25, This lack of monotonicity is, in fact, most
apparent when o is small. Similar results are also given in Fig. 1 for P,
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Figure 1: Double Mesh, pf, and Exact, pf, Rates of Convergence

€ Nj 8 6 32 64 128 256 pa
1/ 21 1.80 194 1.7 198 109 200 196
1/ 41 181 1.80 1.94 1.97 198 199 1.83
1/ 8] 168 1.81 189 1.94 157 198 1.88
1/ 16| 1.48 1.68 1.81 1.88 1.94 197 179
1/ 32| 110 1.48 168 181 1.89 194 1.65
1/ 64| 033 1.10 148 1.68 1.81 189 1.38
1/ 128 | -0.75 0.03 110 148 1.468 1.81 0.94
1/ 256 | 1.56 -0.75 0.33 110 148 1.68 0.90
1/ 5121 1.44 1.55 -0.76 033 110 148 0.86
1/ 1024 102 144 155 075 033 L1008
1/ 2048 100 1.02 144 155 075 033 0.76
1/ 4006 1.00 100 1.02 144 155 -0.75 0.88
1/ 8192| 1.00 1.0 .00 1.02 144 155 117
1/ 163841 1.00 100 100 L0G 102 144 1.08
1/ 32768 1 10O 100 100 100 100 102 100
1/ 65536 100 100 1.0 100 100 100 100
1/ 131072 ¢ 100 100 100 1.00 100 160 1.0
ok 100 146 100 106 106 1060 180

Table 1: Double Mesh Rate of Convergence, pf, o = 0.25

the rate of convergence calculated using the Doclan, Miller, Schilders
double-mesh method. In this case the actual rates are given in Table
1. Tt can be seen that sericus problems can arise here in interpreting
the table, particularly if we take the rate of convergence to be the
minimum of ph (s} over all ¢, since this will be less than the actual
rate of uniform convergence and for some problems may in fact be
negative. This probiem is significantly more noticeable for the rates
calculated using the double mesh method than for those calculated
using an exact or fine mesh approximation. In the case o = (.25, for
example, the minima are —0.75 and 0.32 respectively. This is what
might be expected from comparison of the two curves in Fig, 1. The
experimental rates of uniform convergence, for a = 0.25, are pg = 0.76
and p, = (.80 respectively, both of which are significantly lower than
the true rate of 1.00. More examples of these phenomena are given in
I5]. Reporting excessively low rates of uniform convergence is thus an
expected feature of this method.

In view of these reservations we propose the following estimates for
the rate of convergence

ph = average,ps  and  pi= min ol

where
Pl = In(ed" - 7}/ In(2)

and
h R 2h h
= max = maX( max ;= if]e
€4 . Ede - (05"5‘” lu: 1"21“

It is clear that el is a function of f alone and thus we may expect
ph to be approximately a constant independent of . This will lead to
a better essimate for the uniform rate of convergence. In the case o =
0.25, this is p = pF = p} = p; = 1.00. The pi-meﬁhod has been used
to determine the rate of convergence in {3, 4] and many later papers.
We remark however that it does not give any additional information
about the variations in behaviour of the scheme as A — Jor ¢ — 0.
Therefore it is also useful to include tables of pff, to provide more
precise details of this behaviour, This is particularly se for problems
having more complicated boundary or interior fayers.

We should remark at this point that there remain certain problems.
In particular, the restriction that h was sufficiently large is crucial, If
h becomes small, the most prevalent effect is for rounding errors to
corrupt the results. However, if the calculations were done “exactly”,
so that rounding error were absent or negligible, then a more serious
problem would arise. If we produce tables for arbitrarily small A, but

~ only {or finitely small ¢, then most of the rates in the table will be for
h « ¢. In this case, we are in the region where classical convergence
theory applies and thus the rates will be greater than or equal to 1,
for most schiemes. These rates will dominate the table, and, if we
use p}' or pf as the calculated rate, cause even non-uniform schemes
to be reporsed as uniformly convergent. This may be viewed as a
consequence of the form of the tables, where, in this case in particular,
the rate of convergence is a function of p = fhfe. Thus the rates
along the dizgonals are equal. To get an accurate reflection of the
rate of uniform convergence it is therefore necessary to extend the
table at least as far in € as in A, In the one dimensional cases, which
we have tested, {¢f [3] ), we extend the table until the errors, for
given h, stabilizes, which occurs when one is solving, up to rounding
error, the reduced equation, The firest mesh used in the calculations is
k= 1/4096. In practice, using either double or fine mesh methods this
has given acceptably accurate rates. In all cases the rate calculated
using the fine mesh method proved higher. A more cautious approach
might be to use pJ or p}, which are less prone to this effect, aithough
these will again report lower than actual rates of uniform convergence.

We remark that there are other circumstances in which these meth-
ods will report positive cniform convergence rates where, using the
normal definition, the scheme would not be considered uniformly con-
vergent. This is particularly true of the centered difference approx-
imation to a self-adjoint problem and of two or higher dimensional
problems exhibiting certain phenomena. These issues are considered
further in [5].
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