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Abstract:- We propose an algorithm for the paraliel LU decom-
position of an upper Hessenberg matrix on a shared memory malti-
processor. We consider the general case of p processors, where p is not
related to the size of the matrix problem. We show that the LU de-
compeosition of an {m + 1)-banded Hessenberg matrix can be achieved
in O 3’““2) operations, where n is the dimension of the matrix and pis
the number of processors, For tridiagonal matrices this algorithm has
a lower operation count than those in the literature and yields the best
existing algerithm for the solution of tridisgonal systems of equations.

1. Introduction

A number of authors over the last two decades have written on par-
allel algerithms for solving tridiagonal systems. These articles have
considered the problem of solving tridiagonal systems for the form
Az = b, 1 €4 < &k where A and all of the b, are known at the start of
the process. In such cases, the computations can be arranged to pro-
duce highly efficient parallel sclutions to all m systems simultaneousiy,
It should be noted, however, that there are a number of common nu-
merical situations, for exampie the ADI method, where one needs to
solve tridiagonal systems where A is known ab initic but the b;'s are
not all known at the start of the computation but rather arise as a
result of an iteration process.

2. LU Decomposition Algorithm

We shall, in fact, consider the LU decomposition of an n x n upper
Hessenberg matrix, since the analysis is not significantly more diffi-
cult and the additional generality leads to insights, which produce a
more efficient algorithm, Let A = (aj;} be a banded n X n upper
Hessenberg matrix with band width m + 1, i.e., a;; # O only when
min{l,i~1} € j < max{n,m+i—1},1 £ i £ n It suffices to
consider the case where g;1y,; # 6,1 £ ¢ < n— I, since otherwise the
matrix is reducible, and we may consider the LU decomposition of the
subproblems resulting from the reduction. Throughout this paper we
will use the convention that any element with a noapositive index has
vahie zero,

A3 in most algorithms for shared memory multiprocessors, the ob-
ject here is to partition the problem into a number of subproblems
suitable for solution by tasks running on the available processors. We
shall consider the general case of p processors, where p is not related
to the size of the matrix problem., Clearly A has an LU factoriza-
tion, A = LU, where L is a unit lower bi-diagonal n x n matrix and
U = {u;;) Is a banded n % n upper triangular, with m ron-zero diago-
nals, including the main diagonal. The special form of L allows one to
readily determine Z7F. One finds that L~% = (£;;) is an n x n lower
triangular matrix given by

i ILI (&) i2j
i

Y =1k ‘ (1)
0 i<
Thus the elements of U = L~14, satisfy 1 <4,/ <=n
min{ij+1} min{i,j+1} i
wi=  y, bpag= 3 [T (-ley (2)
s=y—m+l a=j-m+l f=a+l

As in the tridiagonal case, the well known substitution (ef. [2], pp.
473 - 474 )
=1

L= et /o (3)

i=2,3,
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can be used to simplify (2). Since ;41 =0, for 1 £ j < n=1,(2)
yields the following linear systems for the unknowns y;:
Y = 6, 70 ' g1 = 1

7
3 (1Y way, 1$i<n-L (4

sl

Vit18415 =

It is clear that (4) defines an m + 1 banded triangular linear system

Ty=e, (5)
where
1 if i=j=1
ti; = (""1)""&:'.,‘._5 j1<t,i>1
0 i>i

Thus the problem of finding an LU {actorization of an upper Hes.
senberg matrix reduces to solving the banded triangular system de-
scribed in (5) to obtain the y;'s and thern using the solution of that sys.
tem to evaluate L and U, In practice, I may be determined from equa-
tion (3). To determine U, note first that the elements of the (m — 1)*
diagonal, Ui itm~1 Satisfy % ipme1 = Giigmar, fOri=1,....,0—-m+1.
Also uyj ayj for 7 = 1,....,m. Thus these elements do not re-
quire any calcuiation. The j*% super-diagonal is given in terms of the

(7 + 1" by

(6)

Note that each element depends only on a single element of the next
superdiagonal and on known values from [ and A. Thus, the calcu-
lation of each super-diagonal of U is perfectly paralielizable. In fact,
the main diagonal may be obtained using 1 division rather than the
multiplication and subtraction in (8) by

Luimyjei + Uigei = @igaint = 2,000, = f.

(7

Ui = ipiflipni= 2,0

Further, the calculation of the super-diagonals ¢an be chained.
Thas the calculation of L using (3) requires n — 1 divisions. The
total computations for U is

m=2
(n--1)+ZZ(n--j-—-l)zn(2m-—3)—-(m2—m-—l).
i=1

(8)

The latter term is negative for m > 1. Hence we get the following
upper bound for the complexity of calculating I/

n{2m - 3).

Note that in the case of a tridiagonal system, m = 2, {8) reduces
exactly to n — 1. Hence using p processors L and U can be calculated

in the general case in
2n(m — 1}

P
operations and in the special tridiagonal case in

2An—1)/p (10)

operations. There remains only the solution of the triangular system
Ty =e.

(9)

3,

In [3], Lakshmivarahan and Dhall present an algorithm for calcu-
lating the LU factorization of a tridiagonal matrix. Their algorithm

Algorithm for the Triangular System



used the substitution given in (3} to produce a linear system, which
is equivalent to that described by {5) with m = 2, Qur algorithm is a
generalization to the upper Hessenberg case of the algorithm presented
in]3]. We remark that the improvement produced in the generalization
leads also to a more efficient algorithm for the tridiagonal case.

In order to partition the problem we set

T .
2 = (Vjmmtts Viemas s ¥i) . 1278

and let B;,1 < 7 < n—1, be the m x m matrix

g 1 G i
0 0 1
B; = ., 0 (11)
0‘ _9 1
le me—l b"m

where b‘,’ = (=)™ myii/a41; = 1,2, ,n— 1. We abtain
from (4} the m-vector iteration

zig1 = Bjz; =12, ,m~1. (12}

In order to evaiuate Yy, %2, , Yn, O0€ must compute

(f[ C’,-) a, k=123, N:=fn-1/m}. (13)
i=1

Zem4l =
im nwl
where C; 1= H Bj, 1 <1< N—1and Cp = H B;,
j=li=1)m+1 J={N-2)m+1

k
To calculate the required products H Ciy k= 1,2,--+, N, one uses

i=1
a varlant of recursive doubling. Let 2y, = Cyz and Z; = G, @ =

2,..., N, then, assuming we have g processor groups, each group first
calculates
(k1) !
Dl’.k= H AN k:l,,..,g,[=2,...,M=N/g.

iz (k= 1)M+2
Ther the g processor groups execute the following algorithm:

for ¢ := 0 thru log{g)— 1 do
{distribute the g/2 independent calculations found in the}
{ j and k loops below among the g/2 groups of processors }
for 7 1= 2% thru ¢ — 2/ step 2+ do
for k:= 7+ 1 thru j +2° do
{using 2 groups calculate }
for I = 1 thru M do
Dip = DiiDagj

It is easily seen that after the execution of the above algorithm Dy =
([’If,-i:ll)“'f'H Cj}#. For the purpose of simplifying the complexity anal-
ysis, assume that n = Nm+ 1, p= g(2m ~ 1) where g is 2 power of 2,
and N = gM.

An analysis, the details of which appear in (1], ylelds the following
time complexity estimate.  For a general upper Hesserberg matrix
with band width m + 1, the time required to calculate its y;'’s in this
fashion is

I om? - 2m+ 14 m{2m - 1}105(

5 d )] +O(m). (1)

2m -1

In the tridiagonal case m = 2, and this reduces to
n [21 P
— 35, 15
2[5+ swed)) (15)

Thus, from {9} and (14}, the total cost of an LU factorization is

4 )] +0(m).  (16)

2 lgm? - :
% 6m* +2m -3+ (2m m)bg(zmwl

Ly

In the tridiagonal case, by (10) and (15), the cost of producing an LU

factorization is  F28 »
2 [-5-+310g (g)] +0(1). (17

If one’s goal is to solve the linear system Az = b, in addition to
solving (5), one must also perform the backsolve by selving the banded
triangular systems Lz = b and Uz = 2. In the tridiagonal case, this
may be done by casting it as the solution of two linear recurrences,
similar to (2.3) and (2.4) in [3). The recurrences may then be cast
in the form z; = oz + 5; and solved using Algorithm 4 and
Algorithm Y from [3]. The complexity involved, in the tridiagonal case,
is 2n/p, to cast the analogue of {2.3) in [3] in the appropriate form,
and 3n(2 +log{2p/3))/p to solve the two recurrences, using Algorithm

A and Algorithm Y. Adding these gives a total of
n 2p
- -1} 1
(8 + 310g(2) a9
The cost of solving for one righthand side, giver by {17) and (18), is
thus 41
n P
> [2 +6log (3)] +0(1). (1)

4. Conclusions
In the tridiagonal case, the algorithm is not only better than ex-
isting algorithms in the literature for LU decomposition, but also has .
batter computational complexity for the solution of a single tridiagonal
system, as indicated in Table 1, where nt = n 4+ 1 = 24,

i Method Processors Time
Serial  (Jaussian 1 8n
Elimination
Recursive n 24logn
Doubling {2]
0Odd-Even /2 19log n/ — 14
Reduction {2]
Odd-Ever L l4logns+ 1
Elimination [2}
Lakshmivarahan n/2 i8logn
Dhall {3]
Lakshmivarahan B (n/p){25 + 9logp/3] -3
Dhall {3 1<psin
Algorithm P (n/p){47/2 + 6log p/3)

Table 1: Complexity of the solution of a single linear system for tridi-
agonal matrices.

Further let us consider zgain cases, such as the ADI method dis-
cussed in the introduction, where 4 is known in advance but the b;
are not. Comparing this algorithm with methods, such as Recursive-
Doubling, which do not perform the LU decomposition, a further im-
provement in computational efficiency results, since one need only per-
form the forward and back solves, for each right-hand side, rather than
performing the full elimination.
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