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ANALYTIC ESTIMATES AND UNIFORM NUMERICAL METHODS FOR
MULTIPLE BOUNDARY TURNING POINT PROBLEMS

PAUL A. FARRELL * anp RELJA VULANOVIC !

Abstract, We present results, which characterize the behaviour of a a singularly perturbed boundary value problem
with a multiple turning point at a boundary. A representation of the solution and bounds an the derivatives are derived,
Criteria for unifotm stability of a ciass of schemes is given, together with some schemes which are uniformly convergent

for these problems.
AMS(MOS) subject classifications. 34E10, 65L10.

Key words. Boundery value problem, singular perturbation, turning point, finite-difference scheme, exponentiai
fitting.
1 Introduction

In this paper we shall outline the derivation of estimates for the derivatives and a low order asymptotic

expansion for the solution of multiple boundary turning point problems of the form :

L¥u = —eu’ + 2*b(z)u’ + e{z)u = f(z), z € I =[0,1], (1.1a)
Bu := (u(0),u(1)) = (Uo, Uy), : (L.1b)

where Up and U, are given numbers, 0 < ¢ € ¢* < 1, and throughout the paper we shall assume:

k=2 or k&3 +oc0), (1.2a)

be, f € C¥I), o © O (L2w)
bz)2b.>0, z €1, (1.2¢)
dry>e.>0,z€l, (1.2d)

Note that here k is not necessarily an integer—it is sufficient to assume {1.2a) because what we require

is that @ € C3([), where
a{z) = z*b(z).

A turning-point problem of the form L=, where the first and second derivative’s coefficients are of the same
sign is called an attractive turning-point. If the coeficients arc of opposite sign, as in L7, it is referred
to as a repulsive turning-point problem. In addition, we shall present some uniform stability criteria for
difference schemes for these problems and give some examples of uniformly convergent schemes. More

complete proofs of the results will appear in later publications.

* Department of Mathematics & Computer Science, Kent State University, OH 44242, U.S.A.

! Institute of Mathematics, University of Novi Sad, Yugoslavia.
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Simple turning point problems, that is problems of the form {1.1) with k£ = |, have atiracted most
of the attention, among turning point problems, both analytically and numerically. There are however,
some results in the literature on multiple turning point problems, for example [4] and [5], both papers
dealing with a general turning point problem. In [4], the asymptotics of a homogeneous problem was
investigated, and in {5}, a numerical method based on special discretization meshes was given for a
semilinear problem, The eriteria for unilorm stability and convergence, on a uniform mesh, of certain

-interior multiple turning point problems were considered in {2l

We shall outline, in section 2, the derivation of the analytic estimates for the derivatives and a low
order asymptotic expansion for the solution of the attractive boundary turning point case. In section 3,
we shall derive criteria for uniform stability for a class of schemes and give sample schemes which are
uniformly convergent for this problem. In section 4 we will give analytic estimates, stability estimates
and numerical results for repulsive boundary turning poini cases.

Throughout this paper M shall denote any posttive constant independent of ¢, Some of these

constants will however be denoted by M, M, etc.

2  Attractive Turning Peint — Analytic Results

We give sketches of the results, which will appear in [7).

LEMMA 2.1, The problem {1.1) has a unique solution u, which is bounded uniformly in ¢:

lufz)] < M, z& I {2.1)

FProof. The proof follows using the maximum principle and the comparison function plz) = Mo(2 — 2).
8|
Let

gi(x) 42 ofz) £1a'(x), 1+ =1,2,3
Because of
(0 =c(0) > c. >0, : =1,2,3,
there exists a point 8y € (0,1), independent of ¢, such that
| o gi{x) > g >0, z€[0,8], i=1,2,3 - {2.2)
Next, let g.(2} € C*I) be a function such that

9@ S M1+ e expl—pz)), 1=0,1,2,3, z€1, p. = /‘%

Then, in a manner similar to Lemma 2.1, the problem

Ly (z)y=g(z), €1, By = (U, U},



has a unique solution v, and
elz)l < M, z¢& 1.
LEMMA 2.2, There exist points §; (0,8}, i=1,2,3, independent of ¢ and such gﬁat
WGy < M, i=1,2,3. . {2.3)
On the other hand:

[v{0)] < M2 i=1,2.3. (2.4)

Proof. The proof of (2.3) follows by choosing the §; appropiately. For example, #; is chosen such that
b1 € (0,80) and y/(6;) = (y.(60) — ¥.(0))/8. To prove (2.4}, we rewrite the differential equation int the

form:

=~y (2) = (a(@)(2)) + (a'(2) + efz))ye(z) = gu(2)

and integrate from 0 to the point z* such that y{z*) = (7€) = y.(0}}/ Ve, x‘l e {0, \/-) Now Iy:{x )| g
Me='?, and on division by ¢, we get Jyi(0 )] < Mle ‘“‘ ef-1 4 eled) < !idhs"’/2 Then (2 4) foﬂows for
i =2, from Ly.(z) = g(2) at = = 0, and for i = 3 after differentiation. 0

LEMMA 2.3. Let y(x) be as above, then

@) S ML+ P exp(~praz)), z€l, i=1,23. (2.5)

[

Proof. This follows in a manner similar to (5]. .
THEOREM 2.4. For the solution u, to the attractive prob[em of the form (I 1) the foilowmg rcpresentatwn
holds :

u(e) =wrvo(z) + z(z), z €1, T (26
v () = exp(~px), p= \/—d{?——l, lw| < M, {2.6b)
N s M (1 + ¢ F exp(~/Tz/vd), i=0,1,2,3, z€l, . - {2.6¢)

Proof. The proof is given in [7]. DO

3 Attractive Turning Point - Uniform Schemes

Let [* be the discretization mesh given by z; = th,i = 0,...,n, where b = 1/n, and let w‘i‘ uh ete.

denote mesh functions on I*, that is wh = Wa, Wy, walT, with corres Gndm norm [Jut = max w;il.
) B
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Tler the discrete problem corresponding to (1.1} is given by
LRw; i= e D, Dy atDowy + chwy = [ = Hiln =1, (3.1a)
wy = Uy, w, = Uy, {3.1b)
where &y is a {itting factor, and
Dy o= (g — wi)/h, DeDo = (wigy = 2wi + wi_ )/ 02

A sufficient condition for uniform stability for a problem in this form is given by:

LEMMA 3.1. Let
o 20, al >0, c'}-‘ > {0 and af‘ +el > a0, {3.2)
then wh, the solution of (3.1), satisfies a stability result of the form

ot} < M maz (s, b, 11 74]1).

P’roof. It is casy to show, using {3.2), that the matrix is an A — matrir and the stabiiity result follows
using the comparison function Mo(2 ~ z). 0O
One can show that an appropriate choice for the fitting factor, in the case a! = a{z;), el = o(x;) and

J# = f(«:) is similar to that in [I, Chapter 6] and in (6], that is

. pth? . [el0)
oyl

We shall call this scheme the Constant Miller Scheme {ef. {1, Chapter 6] ). The generalizalion to the
non-cquidistant case will appear in {7).
Let r* be the consistency error, r; = Lhy,(2;) - fzi)yre = ro = 0. Then we can show, using the

representation (1.3), in a manner similar to [7], that
[ri] < Mh.
Hence, using Lemma 3.1, we can show that the above scheme is uniformly O(h) convergent that is .
ek ~ Wl < M. (3.3)

We remark that a2 number of other schemes including the non-constant fitting factor version of
the above scheme, which we shall call the Miller Scheme, Complete Exponential Fitting, and the Ei-
Mistikawy and Werle sckeme are also uniformly O(h) convergent for this problem. The rate of uniform

convergence on equidistant meshes for the problem
—eu’ e+ (1 + 2% = 4(32% — 3z + 1)(1 +2)?, u(0) =1, w{l) =2, (3.4)

with k= 2 and & = 3, are given in Table 3.1, The rate of uniform convergence given is the average rate

ol convergence, using the double mesh method, for a range of values of h and ¢, given by

H={1/2j=3,..9}, E={1/¥;=0,.jred}



where jred is chosen so that ¢ is a value at which the rate of convergence stabilizes, which normally
occurs when, to machine accuracy one is solving the reduced problem. For more details of these tests sce
i3]

i

Other uniformiy convergent schemes can be formulated, which resemble the above schemes in the

Scheme = 2 k=3

Classical Rate { Uniform Rate | Classical Rate | Uniform Rate
Constant Miller 1.08 93 1.08 .93
Miller Scheme 1.08 .83 1.08 .93
Complete Fitting 2.00 85 2.00 .19
Ei-Mistikawy & Werle 1.83 1.21 1.82 1.17

Table 3.1: Convergence Rates for Attractive Multiple Turning Point Case

boundary layer at ¢ = 0, but are merely upwinded outside it. It should be noted that, like the interior
simple turning point case and unlike the self-adjoint non-turning point case, the El-Mistikawy & Werle

scheme is only O(R) uniformiy convergent, as opposed to being a second order uniform scheme.

4 Repulsive Multiple Turning Point — Analytic and Numeric Results

The behaviour, in the repulsive case, is significantly more complicated. It exhibits layers at both bound-
aries, an exponential layer of non-selfadjoint type at = = 1 and a more complicated layer at z = 0. We
can characterize the behaviour of the derivatives, in a manner similar to Lemma 2.1, as follows:

LEMMA 4.1. Forz €[, there exits a v, 0 < ¥ < ba, such that
@ S M (L4 (Ve a)™ + ¢ exp(—1(z - 1)/e)), i=1,2,3. (4.1)

A more precise analysis leads to a first order asymptotic expansion of the formu:

THEOREM 4.2, The solution u, of the repulsive prodlem (1.1) satisfies the following :

u() = av(z) + fue(z) + z(a), z €], (4.22)
v(e) = oxp(—pz), p= /T, |o < M, (4.2b)
we(z) = exp(=b(1)(z ~ 1)/e), 18] < M, ' (42

M) € M (14 (e +z)' = £ i exp(~y{z — 1)/e}}, some 0 <~ < b, i=0,1,2,3. (4.2d)

Thus the first order boundary layer behaviour is similar to the selfadjoint problem at z = 0. The higher
order boundary layer functions, at ¢ = 0, however show significantly more complicated behaviour similar
to that of the simple interior turning point problem.

A stability resuit analogous to that in section 3 can be given for this case also. In fact, if we choose

to formulate the discrete probiem corresponding to (1.1) in the form

Lhw; i= —¢oi Dy Dow; + af D_w; + chwy = fF, i = I{1)n ~ 1, {(4.3a)

Wy = Ug,wn = {/f] (431)}



then Lemma 3.1 gives a sufficient condition for uniform stability for this problem also.

It is clear that any uniformly convergent scheme on a uniform mesh must model the two boundary
layer behaviours given in Theorem 4.2, Thus neither the [I'in-Allen-Southwell scheme nor the Miller
scheme above exhibit uniform convergence for this problem. On the other hand, we can construct a
composite scheme which is Miller-like near ¢ = 0 and resembles I1'in- Allen-Southwell near z = 1. This
will exhibit uniform convergence, as wiil the Complete Fitting and El-Mistikawy & Werle schemes, which

automatically adapt in this way. Table 4.1 gives some numericai results for this problem,

Scheme { k=2 k=13

Classical Rate ; Uniform Rate | Classical Rate | Uniform Rate
Miller Scheme 1.00 -.01 1.02 -
Hin-Allen-Southwel] 2.00 .29 1.99 .04
Complete Fitting 2.00 .92 1.99 .93
El-Mistikawy & Werle 1.86 1.14 1.87 115

Table 4.1: Convergence Rates for Repulsive Multiple Turning Point Case
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