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Abstract

We will describe a finite difference code for computing equilibrium configurations, of
the order-parameter tensor field for nematic liquid crystals, in rectangular regions, by mini-
mization of the Landau - de Gennes Free Energy functional. The implementation of the free -
energy functional described here includes electric and magnetic fields, quadratic gradient
terms, and scalar bulk terms through sixth order. The inclusion of the electric field term in
the free energy equation allows modelling of the dielectric tensor (which is roportional to
the Q-tznsor%s a function of the radiation field. Boundary conditions include the effects
of strong surface anchoring. The target architectures for our implementation are SIMD
machines, with interconnection networks which can be configured as 2 or 3 dimensional
grids, such as the Wavetracer DTC. We also discuss the relative efficiency of a number of
1terative methods for the solution of the linear systems arising from this discretization on

such architectures and iltustrate some results for a disclination problem on a rectangular
region. -

I. Introduction : The Problem

We consider a finite difference approximation of the equilibrium confi guration of liquid
crystals in a slab,

Q={(z,1,2) :052<a,0<y<h0<2z<ecl
Following Gartland [3], we will use the Landau-de Gennes formulation, and seek a tensor

order parameter field Q that minimizes the free energy of the system. In this case, the free
energy can be expressed as

F = FV() Fsu - f VO sk ]
(Q) = Fol(@) + Q) = | fua@) + [ frua(@)
where Q(x} is a 3 x 3 symmetric, traceless tensor and where Q and 8% represent the

interior and surface of the slab respectively. In this implementation we limit ourselves to

strong anchoring on the surface of Q. This corresponds to Dirichlet boundary conditions
ong;,:=1,...,5, and in such cases

Fus(@) = [ fac(@) = 0.

The term Fio(Q) represents an approximation of the interior free energy. To describe
Foo(Q), we will use the convention that summation over repeated indices is implied and

57



that indices separated by commas represent partial derivatives. With these convcnuons
Foa(Q) has the following form, (see, for instance [7]):

1
fvol(@) i '2'L1 Qaﬁn’Qaﬁﬂ + _ﬁL?QﬂﬁaﬁQﬂ“f(‘f + §L3chﬁana'v.ﬁ + EA trace(Qz)

Ip trace((Q?)trace(Q*) (1

1 EN | 2y2
3Btracc(Q )+ 4C’trace(@ )+ 3

1 ' 1
+-6~M trace(Q%)* + EM ‘trace(Q*)* — AXmax HoQopHp — Aepax EoQopEp -

where L1, L, and L are elastic constants, A, B, C, D, M, and M' are bulk constants, and

H, AxXmax, E, and Aepg, are the field terms and constants associated with the magnetic and
electrical fields respectively.

For P € Q, the tensor Q(P) will be represented in the form,
QP) = (Qaplapmr = 6PVt + ©(P)br + 05(P) s + au(P)ds + g5(P)gs  (2)

where {g,(P)};., are real-valued functions on £ and the ¢; are a basis for the prcscn'bed
tensor field [2, 3].

I. The Implementation

To discretize our problem we begin by dividing the slab Qinto I x J x K regions
v(t, J, k) = {(z,y,2) 110z <z < (i+1)Az, jAy <y < (j+1)Ay, kAz < 2 < (k+1)Az}
for0 <i<7T-1,0<j<J-1and0 <k <K —1,where Az = a/l, Ay = b/J,

Az =c/K. :

Using the points P = (zy,y;, 2x), where z; = iAz, y; = jAy, z; = kAz which are

located in the lower left-hand corner of the v(4, j, k), we represent the discrete interior free
energy integral by

5@ % E At @Ceivs, ) x volumelvi, j, k). (3)
i,k
Note that (1) involves derivatives of the functions {¢,(P)}3., with respect to the z, y, and
z coordinates. For interior points P, these derivatives can be approximated using central
difference approximations.

Thus, we have the following approximation of the Landau-de Gennes free energy
which is second order accurate:

Q) = Z Jea(@(zi, y55 21)) x volurne(w( Z h(xi, ys, 21). (4)
i3,k 1k
With the discretization (4), we have reduced the problem to one of minimizing
2 ik M(zi, ¥5, 2i) over all choices of {ge(z:, y;, 21)}5,. This unconstrained discrete min-
imization problem can be attacked in the standard way. That is, seek a solution of the
non-linear system of equations
72k azijkh(%,yj’zk)

gl 7, = = =0, 5
(G2, dq4(2, 3, 21) o
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for1 <1< J—1, 1<i<J-11<k<K-landf=1...5 A standard approach,
to solving non-linear systems such as these, is to use Newton’s method.

In the next section, we will describe the type of computer architecture we use for our
implementation, and sketch the details of that implementation,

II1. The Architecture

Our target architecture is a Single Instruction Multiple Data stream (SIMD) computer,
so called, since each of the processors execute the same instruction in lock-step on the data
stored in its associated local memory. The platform chosen for this implementation was the
Wavetracer Data Transport Computer (DTC), situated in the Department of Mathematics
and Computer Science at Kent State. The minimal configuration, the DTC-4, has 4096
processors. These can be configured either as a 16 x 16 x 16 cube, for three dimensional
applications, or as a 64 x 64 square, for two dimensional applications. The assumption
here is that most applications, correspond to physical problems in 2 or 3 dimensions, and
thus a 2 and 3 dimensional interconnection network is the most efficient for their solution.

The traditional mode of solution of problems on a SIMD machine involves assigning
one processor of the array per node in the problem space. To provide the ability to consider
problems with more nodes than are available in the array, the DTC provides the ability to
partition the memory of each processor to provide a larger number of virtual processors.

For the minimization problem we are considering, each discretization point, P, of the
slab is associated with a virtual processor. Each set of 5 unknowns {g¢(P)}e1 s, at the
point P, is stored in a single virtual processor’s memory. For each {ge(P)}sys there is
also a corresponding row of the Jacobian matrix. The nonzero constants of that row are also
stored in the virtual processor memory. The set of processors with which a given processor,
£, must communicate in order to update its row of the Jacobian is called the stencil of P.
The finite difference approximation described here yields a relatively small and compact
stencil. In the problem discussed below, the stencil will consist of processors which are at
most two steps away from the given processor.

1V, Infinite Siab Case

In this paper we shall confine our consideration to the case of an infinite slab. Assuming
the slab is infinite in the z-direction and imposing boundary conditions, which do not vary
with z, effectively reduces the problem to a two dimensional problem on a rectangle:

Q= {(z,y}:0<z<q, 0<y <b}.

The Euler-Lagrange equations, corresponding to (1), form a system of non-linear elliptic
partial differential equations. Discretizing this system of equations produces the discrete
Euler-Lagrange equations. Using standard central-difference approximations for the partial
derivatives produces a 9-point stencil (in our implementation) at each nodal point in the
domain. Since nearest-neighbor communications are efficient on the Wavetracer’s mesh
array of processors, the communication costs are minimal.

In order to solve the resulting non-linear system of equations we use an Inexact New-
ton’s method. Let G : B" — R" be a function representing the discrete Euler-Lagrange
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equations. The function G depends on the 5n unknowns

G(X) = G(qllﬁ"'?qu‘}q%’""q'§ﬂ"'ﬂq;l!‘"q;))

where n = (I — 1) x (J — 1) is the number of interior nodal points. The method requires
solving a large sparse linear system G'{x)s; = —G(x}), where G'(x) is the Jacobian of
the system, and then updating the unknowns. Inexact Newton methods use some form of
iterative procedure to solve the linear system approximately. Several iterative techniques
such as SOR and multi-grid were tested on this inner problem with varying success. Note
that the matrix G'(x) is singular at bifurcation and turning points and can be indefinite near
these points. This can cause convergence problems when solving the inner linear system.

V. Iterative Solvers

Several classical iterative schemes were used to solve the inner sparse linear system
for qi,. .., g5 at each nodal point. Each method had certain advantages and disadvantages
when used as a solver on the Wavetracer. Both point and block versions of the following
schemes were tried for the numerical simulations:

1. Multi-colored SOR (sor and blocksor)

2. Multi-level Multi-colored SOR (ml-sor and ml-blsor)
3. Multi-grid (mg and blockmg)

4. Multi-level multi-grid (ml-mg and mi-blmg)

The blocking scheme used involves blocking the gi,. . ., g5 at each nodal po'mt and using a
block-iterative technique such as block-SOR.

A multi-coloring scheme was used for the SOR iterations [6] in order to introduce
parallelism into the method. Only 4 colors were needed in the case considered here, since
there is only a 9-point stencil at each node. The parameter w was chosen to be the opfimal w
for the simple Laplacian model, since the matrix in our linear system has a similar structure
to the Laplacian matrix. Numerical experimentation showed that this was a good choice
for this problem.

Multi-grid methods [5] are a class of fast linear solvers which are widely used. These
methods performed well in our numerical simulations. When multi-grid was combined with
a multi-level scheme [1, 4], it performed exceptionally well. Multi-level V-cycle multi-grid
gave the best overall performance in our numerical simulations.

Preconditioned conjugate gradient schemes were tried on a simpler model problem [2]
and were found to perform less efficiently than the methods considered above.

VI. Numerical Results

To illustrate the comparative speeds of the different solvers a test problem w1th the
following known solution was used:

gy = I, q2$$2a B=Y, Q4:y2, gs = TY.

Dirichlet (strong anchoring) conditions at the boundary were used. The simulations were
performed in single precision on a Wavetracer DTC-4 with a 64 x 64 grid of processors.
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In addition to the residuals, the errors can also be computed after each outer iteration, since -
the true solution is known. Initial guesses were chosen so that the initial maximum error
at all points, except the boundary points, was 1.0. The iterations were continued until the
maximum residual for the system was reduced by a factor of 10°. Table 1 gives the results
of these numerical simulations.

real  user syst maxg-resid max g-error outer iters

-sor 1487 76 129 9.1(-2) 2.4(-5) 34
blocksor 1063 64 65 7.9(-2) 1.3(-5) 17
ml-sor 1005 62 9.7 6.1(-2) 2.0(-5) 25(3,1,2,5,14)
ml-blsor 1050 74 7.6 8.2(-2) 1.1(-5) 18(3,1,2,4,8)
mg 422 22 19 34(2) 4.7(-5) 4
blockmg 609 41 1.6 3.0(2) - 4.2(-5) 4
ml-mg 363 28 28 4.6(-2) 3.9(-6) 8(4,1,1,1,1)
mil-bimg 50.5 38 27 4.6(-2) 3.9(-6) 8(4,1,1,1,1)

Table 1: Timings for Sample Problem on the Wavetracer DTC for I = J = 64.

The Wavetracer DTC does not itself contain a micro-second timer. Consequently, all
timings must be performed on the Sun 3/50 front end. The columns real, user and syst
give the real {wall clock) time, the time spent in executing user code on the front end, and
the time spent on systems tasks related to the program, including input/output. Maximum
residuals and errors are computed over all grid points for ¢i,...,¢s. For the multi-level
schemes the number of outer iterations performed at each level are given in parentheses
in the last column of the table along with the total number of outer iterations needed for
convergence. '

The numerical results show that the multi-level multi-grid scheme gave the best overall
performance. The above results are for the given test problem with known solution. Sub-
sequent simulations performed on the more realistic liquid crystal problem, with Dirichlet
boundary conditions, discussed below, produced results consistent with that of the above
test problem.

Figure 1 gives the results for a liquid crystal problem with disclinations (nematic
defects). The alignments of the tensor fields are simulated for two different anchoring
conditions at the boundary. These are called disclinations of strengths one-half and one,
respectively. We prescribe the director field on the boundary of 2 to be

n = {cos(sB), sin{s@),0}

where © is the polar angle in the rectangular coordinate system. The director fields were

calculated on a mesh with / = J = 64 but plotted on a coarser mesh to improve the

resolution. The length of each director in the plot is proportional to the scalar order

parameter (maximum eigenvalue of the Q-tensor) at that point. The figures show the
equilibrium configurations of the director fields for s = 0.5 and s = 1.0, respectively. In

both cases, as we approach the center of the field, the scalar order parameter at those points

goes to zero and the field becomes isotropic. As we decrease the temperature, we expect

this isotropic core to shrink eventually to a point defect.
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Figure 1: Director Field for liquid crystal problem with disclination

For these simulations the following valués were used fof the elastic and bulk constants:
= 10,1l = L3 =00,A=-~30,B=C=D=M = M = 1.0. There were no

magnetic or electric field terms present. The plots were generated using the apE graphics
package licensed by Ohio State University.
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