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ABSTRACT

We will describe a finite difference code for computing equilibrium configurations,
of the order-parameter tensor field for nematic liquid crystals, in ellipsoidal regions, by
minimization of the Landau - de Gennes Free Energy functional. Our implementation
of the free energy functional includes linear and quadratic surface terms, electric and
magnetic fields, all three quadratic gradient terms, and scalar bulk terms through
sixth order. Boundary conditions include the effects of both strong and weak surface
anchoring. Studying such problems in general ellipsoidal regions permits not only
- the modelling of traditional spherical regions, free from surface defects, but also the
symmetry breaking effects of surface distortions and defects.

The target architectures for our implementation are SIMD machines, with 3 di-
mensional rectangular grids, such as the Wavetracer DT'C in the department of Math-
ematics and Computer Science, and with hypercube networks such as the Thinking
Machines Corporation CM-2.

1. Introduction: The Problem. We consider a finite difference approxima-
tion of the equilibrium configuration of liquid crystals in an ellipsoidal region,

0 = {(arsin(@) cos{(8), brsin(¢)sin(f),crcos(F)): 0 < r <1, 0< 6 < 27, 0 < ¢ < 7},

where @, b and c are the three semi-axes of the ellipsoid. Following Gartland ([2]), we
will use the Landau-de Gennes formulation, and seek a tensor order parameter field
Q that minimizes the free energy of the system. In this case, the free energy can be
expressed as

F(Q) = FoalQ) + Faxt(@)
= /S;fvol(Q)_i' -/89 fsurf(@)s

where Q(x) is a 3 x 3 symumetric, traceless tensor and where  and 80 represent the
interior and surface of the ellipsoid respectively.

The term Fii{@) represents an approximation of the interior free energy. To
describe Fua{Q), we will use the convention that summation over repeated indices
is implied and that indices separated by commas represent partial derivatives. With
these conventions Fuai(Q) has the following form, (see, for instance [4]):

fvoi(Q) = %LIQOQG,‘YQQI,G,‘Y + %LZQaﬁ.ﬁQa’y,w + %LSQaﬁ.’YQa'y,ﬁ

+ 2 Atrace(Q?) — 1 Btrace(Q®) + 1C trace(Q?)?

+ 1Dtrace(Q*)trace(Q?) + L Etrace(Q*)® + 1 E' trace(Q®)"
- AXmaxHaQaﬁHﬁ . AemaanQaﬁEﬁ .

(1)
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where Ly, Lo, and L3 are elastic constants; A, B, C, D, E, and E’ are bulk constants:
and H, AXmax, F, and A¢yay are the field terms and constants associated with the
magnetic and electrical fields respectively.

Likewise, using the implied summation conventions, the surface free density four
has the form

) fout(Q) = 5V (vaQusrs)? =W - (veQugs),

where v is a unit vector field associated with the type of anchoring of the surface
elements and V and W are prescribed constants.
For P € Q, the tensor Q{P) will be represented in the form,

QP) = (Qaﬁ)z,ﬁzl :
= q(P)E + @(P)Es + q3(P) Es + qu(P}E4 + ¢5(P) E;

- qx(P)(If v §)+q2(m)(I§L SR )

0 [ ;55 0 ) ;3@
+q3(x)(s:§i ? §)+q4($)(§§ § J?)
w8,
+q(r)(a z

similar to that in Gartland (3], where {g;(P)}3., are real-valued functions on 0.

2. The Implementation . To discretize our problem we begin by dividing the
ellipsoid {1 into (J — 1) x J x K regions

v(, 7, k) = {{ar sin(@) cos{#), br sin(¢) sin(#), cr cos(H))},

for 1<:<I,0<7<J,and 0 <k < K, where {or given 4, J, k,

and one region centered at the origin

v(0,0,0) = {{arsin(¢)cos(d),brsin{¢)sin(f),crcos(8)):0<r < Ar, 0 <8 < 2r,
0< ¢ <7},

We represent the discrete interior free energy integral by

(3) fﬂfvoi(@) ~ Z FealQ(r:, 65, 65)) x volume(v(t, ], k) }.

tk
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Note that (1) involves derivatives of the functions {¢:(P)};., with respect to the z, v,
and z coordinates. The spherical coordinate discretization makes the representation
of these derivatives slightly complicated. For most interior points P, these derivatives
can be approximated using the chain rule and central difference approximations of
the derivatives of {g,(P)};., with respect to r, § and ¢. Since central difference
approximations use data from only immediately adjacent points, for interior points
at least, fua(@(P)) can be approximated using the values of {g,{P)}3., and the values
of those functions at the 6 points immediately adjacent to P.

When r = 0 or ¢ = =+, the derivatives with respect to », # and ¢ do not exist,
so these cases require special handling. However, if we require that 7/2 be an integer
multiple of both Af and A¢ (say 7/2 = kgAf and 7/2 = juA¢), then, for instance,

8‘1{(?‘0; QSO, 60) £y ‘H(rl) ¢je: 90) - QE(rla ¢j0 ] gko)
Jdz 2A7r '

In a similar manner, one can approximate the other partial derivatives of g{rg, do, fo)
as well as those of gu(ri, o, 0x) and ge(ri, ¢2j,,0:) (which lie on the positive and neg-
ative z-axis) using only data from immediately adjacent points. Therefore, even for
points P which lie on the z-axis, we can approximate fu(Q(P)) accurately using the
values of {g:(P)}i_; at P and at 6 poinis immediately adjacent to P.

By our choice of Ar , the points on the surface of the ellipsoid are

I
(TI-Ha qﬁj!gk) = ((I + i)AT:quﬁa k[lg),
for 0 < j<J, 0<k< K. Upon setting |
a(j:k) = {(T[+1>¢J’19k) 0<yj<,0<k< ]{},

we can approximate the surface energy by

(®) [, Foni(Q) % 3 fuut(@rinn, 65, 64)) x areala(s, k),
ik
where fourr(Q(r141, ¢, 0x)) can be evaluated using only the data at the point (r741, ¢;, 01 ).
Using {3) and (4), we have the following approximation of the Landau-de
Gennes free energy which is essentially second order accurate!:

F(Q) Ei,j,k fvol(Q(Th quvgk)) x UO[UTH@(U(i,j, k))
Zj,k ﬂaurf(Q(TI-iml: Qﬁja Hk)) X area(a(j, k))
Loigk h{(ri, @5, 0k)),

where h((r;, ¢;,0%)) can be evaluated using the values of {g:};_, at (r:, ¢;,0:) and six
adjacent points.

(5)

I+ &

! Since the first order accurate approximations, which come from using the chain rule near ¢=0
and r = 0 represent only a small fraction of the tofal, numerical experience indicates that the
solution will remain second order accurate. )
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With the discretization (5), we have reduced the problem to one of minimizing

(6) min Y A({rs, ¢;, 6x))

Lk

over all choices of {g¢(r;, ¢;,0k)}5.,. This unconstrained discrete minimization prob-
lermn can be attacked in the standard way. That is, seek a solution of the non-linear
system of equations

O350 h((ri, 85, 0k))
8ge(r;, ¢, 0¢)

for0<i<I+1,0<7<J,0<k<K,and £=1...5 A standard approach, to
solving non-linear systems such as these, is to use Newton’s method (see {1]).

FEach iteration of Newton’s method involves solving a linear system, whose matrix
is the Jacobian of (7), and then using that solution to update the iterate and the Ja-
cobian, after which the process is repeated. For the three dimensional problem under
consideration, this linear system is extremely large. A moderate sized problem would
involve 107 unknowns. As our ultimate aim is {o track the minimal energy state as
the temperature varies, we need to be able to solve the minimal energy problem, as
described above, rapidly and to moderate accuracy for each of a large number of suc-
cessive temperatures. As such a task is probably only feasible on a massively parallet
computer, we choose to implement our minimization problem on such a computer.
In the next section, we will describe the type of computer architecture we use for our
implementation, and sketch the details of that implementation.

(7) gth,1,3,k) = =0,

3. The Architecture. Our target architecture is a massively paraliel SIND
computer. This class of computers, is called Single Instruction Multiple Data stream
(SIMD), since each of the processors execute the same instruction in lock-step on
the data stored in its associated local memory. A facility is also provided to select a
subset of processors, by masking the others processors. Only the selected processors
execute the instruction, while the masked processors remain idle. This architecture is
considerably simpler to implement and program than the alternative Multiple Instruc-
tion Multiple Data stream (MIMD) machines, in which each processor can execute
different instruction. The SIMD architecture is normally used for massively parallel
machines, having between 4096 and 65536 processors, each with local memory. The
processors are normally connected by a special purpose high-capacity communication
network and controlled by a front-end processor. Early examples of this architecture
included the Thinking Machines Corporation Connection Machine CM-1 and CM-2.

The platform chosen for this implementation was the Wavetracer Data Transport
Compater (DTC), situated in the Department of Mathematics and Computer Science
at Kent State. The front-end sends instructions and data to a control unit, which
decodes these instructions and broadcasts both instructions and data to the processor
array. The array processors are semi-custom 1.5 micron standard cell chips. Fach
chip contains 32 one-bit processors together with 2 kilobits of fast static RAM for each
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processor, and associated control and memory error-detection circuitry. In addition,
each processor has access to 8 or 32 kilobytes of private external dynamic memory
depending on the configuration. Each circuit board consists of 128 chips. The minimal
configuration, the DTC-4, has one circuit board and thus 4096 processors. Other
configurations are the DT'C-8, with 2 circuit boards and 8192 processors, and the
DTC-16, with 4 circuit boards and 16384 processors.

The processors on each circuit board of the DTC can be configured either as a
16 x 16 x 16 cube, for three dimensional applications, or as a 64 x 64 square, for two
dimensional applications. The DTC-8, can be configured as a 16 x 32 x 16 cube or as
a 64 x 128 square, and the DT'C-16 as a 32 x 32 x 16 cube or as a 128 x 128 square.
The assumption here is that most applications, correspond to physical problems in 2
or 3 dimensions, and thus a 2 and 3 dimensional interconnection network is the most
efficient for their solution. This is in contrast to the Connection Machine, in which
the processors are connected by a hypercube network.

The traditional mode of solution of problems on a SIMD machine involves assign-
ing one processor of the array per node in the problem space. To provide the ability to
consider problems with more nodes than are available in the array, the DTC provides
the ability to partition the memory of each processor to provide a larger number of
virtual processors. There must be the same number of virtual processors for each
physical processor. The number of virtual processors per physical processor is calied
the wvirtual processor ratio. The controller automatically issues instructions to the
array once for each partition. Thus the execution time may be expected to increase

Jlinearly with the virtual processor ratio.

For the minimization problem we are considering, each discretization point, F,
of the ellipsoid is associated with a virtual processor. The spherical discretization we
are using produces concentric grids of points where the ¢ and @ variables vary within
each grid and changing r moves you from grid to grid. With the virtual processors
arranged in a cube, each concentric grid of the spherical discretization maps onto
a plane of the cube, and if we associate the z coordinate of the cube with the »
coordinate of the ellipsoid, then each concentric grid of the spherical discretization
will correspond to a z — y plane of processors in the DTC.

At each point of the ellipsoid the tensor order parameter ) is defined in terms
of the 5 unknowns {g¢(P)}s=15. In our implementation, each set of 5 unknowns
{qe(P)}e=15 is stored in a single virtual processor. For each go(P) there is also a
corresponding row of the Jacobian matrix. The nonzero constants of that row are
also stored in the memory of the processor associated with the discretization point P.
Fach non-zero constant, in a row of the Jacobian associated with P, also corresponds
to another virtual processor {which in turn corresponds to a discretization point)
with which the values of {g¢(P)}e=1,5 at P must be communicated when the Jacobian
matrix is updated. The set of processors with which a given processor, . must com-
municate in order to update its row of the Jacobian is called the stencil of P. If the
stencil of any processor is large, then the process of updating the Jacobian at each
step of Newton’s method will be expensive. Fortunately, the finite difference approx-
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imation yields a relatively small and compact stencil. In our formulation, each point
of the stencil is no more than two steps away, and the total Jacobian matrix can be
updated with approximately 210 communication steps (18 points two steps away and
6 points one step away, 18%2+-6=42, 5%42=210) and the calculation of (24+6+1)*5
=133 row entries per virtual processor. If there are M physical processors, since each
of the physical processors are working simultaneously, a SIMD computer will update
M rows of the Jacobian matrix in the time it takes a sequential computer of similar
speed to update 1 row. :

As we mentioned above, the Jacobian matrix for this implementation is extremely
large and sparse. Typical linear systems involving such matrices are solved with iter-
ative methods the major component of which is a matrix vector multiply. The actual
linear solver we will use in our implementation is still a subject of research. While
the best sequential iterative methods may not be suitable for SIMD machines, there
are iterative methods such as multi-colored SOR or muitigrid which have conver-
gence rates comparable to the best sequential methods for many problems and which
achieve a substantial fraction of the M-fold parallelism of the SIMD computer, Il we
can, as we expect, achieve nearly M-fold parallelism in our linear solver along with
convergence rates comparable to the best linear solvers, then our difference implemen-

tation will likewise achieve nearly an M-fold speedup over a similar finite difference
approximation on a sequential machine.

REFERENCES

(1] J. E. Dennis Jr. and R. B. Schnabel, Numericel Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice Hall, Engelwood, NJ, 1983.

[2] Eugene C. Gartland, On Some Mathematical and Numerical Aspects of the Landau-De Gennes
Minimization Problem for Liquid Crystals, Preprint.

[3] E. C. Gartland, Jr., P. Palffy-Muhoray, and R. S. Varga, Numerical Minimization of the Landau-
De Gennes free energy: Defects in cylindrical capillaries, Mol. Cryst. Lig. Cryst., 199(19%1)
pp. 249-452.

[4] E. B. Priestley, P. J. Wojyowicz, and P. Sheng, eds., Introduction to Liquid Crystals, Plenum
Press, New York, London, 1975.

56



