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Abstract:- Iterative algorithms for domain decomposition suitabie for the
efficient solution of singular perturbation problems are considered. Conver-
gence resuits are established. Numerical examples are presented to demon-
strate the effectiveness of the iterative algorithms on paratlel computers.

L. Introduction

We are interested in iterative algorithms for domain decomposition,
which reduce the given probiem to sequences of boundary value probiems on
appropriate subdomains. An iterative algorithm highly suitable for parallel
computing has been constructed in {1]. Here, we analyze and ilustrate this
algorithm for the solution of singularly perturbed twe-poing boundary value
problems.

Censider the following two semi-linear singular perturbation problems.
The first one is the seifadjoint problem

Loufz) = ew" = flz, u}, r € Q, Q=(0,1), {la)
(0} = ug, u(1) = uy, (10}
fu 2)6‘31 50"—"50135t>0q {fu 2Bf/6u)v (1(.‘)

where ¢ = %, u is a small positive parameter. The solution of {1a)-{1c)
has boundary layers at z = 0, 1. The width of these boundary layers is of
the order of A, = u | In(u} | /fo. For simplicity, we assume here that the
solution u{z ) exhibits a boundary layer only at © = 0 (that is that the reduced
solution satisfies the boundary condition (1b)).

The second problem is the non-selfadjoint problem

Lewfz) = a + ala)' = flz,u), =z6,  NQ=[01), (2
u(0) = wup, w(l) = w, (26)
a(z) > og = const > 0, fuz0, {2¢)

where ¢ is a small positive parameter. The solution of (2a)-(2c) has a
boundary layer at £ = 0 of width 2, = ¢ | In{€) | /.

In this paper we consider two iterative algorithms based on domain de-
composition for the solution of the semi-linear singularly perturbed problems
(1) and (2). Domain decompositions and iterative algorithms for these prob-
lems are introduced in section 2. Section 3 gives convergence results for
these algorithms. In section 4 we present numerical examples and compare
the performance of these iterative algorithms on serial and parailel comput-
ers,

2, Iterative Algorithms
We introduce the decomposition of the domain Q = {0,1) into two
overlapping subdorains £ and £2;:

8 :(O,Zr}, sz(zf,l), O<oy <z, <1

Now consider two sequences of functions {v"(z)}, {w™(z}}, = > 1, satis-
fying the equations:
Ley™(z) = f(z,v%), (3a)
Low™z)= flz,w"), =€, w1} = uy. (3h)

Here L, is defined by (1a} or (2a) and up, w1 by (1b) or (2b), respectively.

We now construct two iterative algorithms, The first one, Al, is the
normal Schwarz alternating procedure. The boundary conditions v, w}
from (3a), (3b) are defined by

n41
UT

z €L, v™0) = uo,

w(z,) = o,

w*(zy) = w},

= w(z,), wl = v"{(#), (4)
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where an initial guess v! must be prescribed.
The second algorithm, A2, is constructed using the interfacial problem

L™z} = fiz, 2™,

X =0 (X, ) = e,

where X; < #; < z, < X,. Here the boundary conditions from (3a), {34}
are determined by the following condition rather than by (4),

T € Shyg = (Xp, Xrds (sa)

o = 2, witt = 2 (), (56

where the initial guesses v} and w! are given.

Algorithm Al is a serial procedure, since the solution v™ of (3a) must be
obtained in order to determine the boundary condition w]® = v™(z;) used in
(3b). Thus (3a) and (3b) are executed in lockstep fashion. Algorithm A2 can
however be carried cut by paratiel processing, since on each iteration step
problems (3a) and (3b} can be solved concurrently to give both v" and w™,

3. Convergence of the Iterative Algorithms
We now formulate convergence results for algorithms Al and A2,

Theorem 1. If x; < x., then the iterative algorithm (3), (4) (that is the
Schwarz aiternaring procedure} converges to the solutions of problems (1}
and (2) with linear rates 0 < ¢! < 1and 0 < ¢ < 1 respectively, where

exp{=20o( . - 1)/ ui,
exp[—ap{2, — 27) /€]

Al
("

Al
e

Theorem 2. If X; < z; < z, < X,, then the iterative algorithm (3),
{5) converges to the solutions of problems (1) and {2} with Hnear rates
0 < ¢ < land 0 < g/ < 1 respecrively, where

«

A2

9
Az

Qe

max{exp[~fo{ X, — 1)/, exp(~Folz, — Xi}/pl},
max {exp[—ool X, — 21)/2¢], exp[—ax(z, ~ Xi}/2€l}.

Remark, Theorems 1 and 2 can be generalized straightforwardly to multi-
domain decomposition.

4. Numerical Results

We emphasize bere, as is clear from Theocrem 2, that the convergence
results for algorithm A2 are independent of the singularly perturbed character
of problems (1) and (2), To construct effective numerical methods for
algorithm A2, it is necessary to take into account the fact that the solution of
problems (1) and (2) have a boundary layer of size h, at & = 0.

We introduce the “natural” decomposition of the original domain £ in
which the boundary layer is localized in subdomain £2; and the region where
the solution is smooth is included in Q,, that is we require;

z; > he. (6)

Effective numerical methods for singular perturbation problems, such as
those based on special ronuniform grids (of, [2],[3]), exhibit the property
of uniform convergence with respect to the small parameter. These speciai
grids are constructed in such a way that the number of grid points inside the
boundary layers is approximately equal to the number of grid points outside
the layers, Thus, if {6) holds and, on subdomains L2, Q) special nonuniform
grids are used, the computational cost of the numerical method for problem
(3a) on €2, is approximately equal to that for (3b) on ;. This property is
very important for implementation of algorithm A2 on parallel computers,



since it avoids loss of efficiency due to one processor being idie. The size
of the overtap domain [z, =.} and hence of the interfacial region [ X1, X,]
also affects the cost of an A2-iferatior, since the solution of the problem
on the interfacial region represents a sequential part of the A2 algorithm,
It also worth mentioning, that condition {6} decreases the pumber of grid
points needed for the interfacial problem (5) thus minimizing the time for its
solution.

We now present the results of some numerical experiments using itera-
tive algorithms At and A2. In the case of algorithm A2 we shall consider the
implementation on a shared memory multiprocessor, the Sequent Balance
B21600, in the Department of Mathematics and Computer Science at Kent
State University. This has 26 processors, each with a 32-bit National Semi-
conductor NS32032 capable of 0.75 MIPS, and 32 MB of shared memory.
The Balance operating system, DYNIX, provides the ability to bind pro-
cesses to processors, using the processor affinity facility, and also a utility
team, which modifies system parameters to permit more accurate timings,
The latter gives the highest priority to the program and disables swapping,
page fault frequency adjustments and process aging, These privileges allow
4 user program 1¢ execute with a8 minimum of system overhead to distort
benchmark times. The coding used the Sequent parailel directives to par-
altelize do loops in the Fortran code, library calls to the microsecond clock
for the timings, and to the paratlel processing library 10 set and manage the
number of processors and to synchronize after the solution of the interfacial
problem.

Example 1. We consider problem (1), where f{z,u) = 1 — &7, up =
1, uy = 0. Introduce a non-equidistant grid w, = {z;, 0 < { < N.}. The
subdomains 2y, £ and (¢ from (3), (5a) are chosen in the forms: z; =
he =25, 2p =20, O< << Ny, k=2 1, Xr =501, Ko = Zhya.

In the boundary layer [0, ], the mesh gencrating function is a logarith-
mic type function similar to that given in [2}. We approximate the differential
equation (1a) by a simple variable-mesk difference formula. The nonlinear

Sq = taftan Sa1=taftaa
£\ h d 0 .05 .01 005 001 1 .05 01 005 001
1 071 055 .22 0.15 0451123 159 204 333 294
01 1.37 149 159 127 0621161 1.72 1,79 217 2.4
.00 1,11 123 149 1.54 156141 152 1.72 1.5 1.56
0001 [ 087 098 1.28 137 1497120 132 154 161 1,72

Table 2: Speedups 54 and 541 for problem (1) with N, = 101

I, Kt K a2

nw\h d 05 01 005 00171 05 01 .0605 001
0.1 506 10 33 58 202110 15 33 56 145
0.01 41 4 4 4 6 14] 4 4 5 6§ 1
0.001 4:4 4 4 4 41 4 4 4 4 4
00001 4/4 4 4 4 414 4 4 4 4

Table 3: Number of iterations for problem (I} for N, = 501

Sa = taftaz Sar = tarftaz
4\ h 105 .01 005 001 d .05 .01 .005 .00t
1 877 054 020 0.15 0.0611.06 123 149 196 263
01 154 164 137 114 061|175 185 1.52 192 244
i 001 135 149 167 167 1671161 172 1.85 1.85 L1.85
0001 1106 1.23 154 159 167139 152 175 182 1.85

Table 4: Speedups 5, and § 4, for problem (1) with &, = 501

Example Z. We consider problem (2), where « 14z, flz,u)
1 —e™, uy =1, u; = 0. We approximate probiem (2) by a difference
scheme on the special nonuniform: grid from [3). The subdomains &, Q;
and £2;,¢ are chosen in the same form as in Example 1. The numerical results

are presented in Table 5 and 6,

We should remark that the anomalous

. o K, K Ka
algebraic systems (after discretization of (3)a.u§ {5))are soivedbyg.onetstep ¢\ b 105 01 605 ool T8 01 005 oot
Newton method. In Table 1 and Table 3, we give the number of iterations,
. s . 0.1 307 12 46 81 205]11 17 36 43 51
{0 achieve an error of 1077, for the direct (undecomposed) method from
. . . . . . . 0.01 313 3 T 12 43 4 4 6 7 8
[2}], K ,, and for iterative algorithms Al and A2, I 4; and K 4 respectively,
. ., . 0.001 313 3 3 3 6{ 3 3 3 3 4
for various ¢ and overlapping interval sizes 2 = 2, — z;. In Table 1 the
. . . 0.0001 212 2 2 2 213 13 3 3 3
number of mesh points ¥, = 101, j = 51 and & > 52 and in Table 3 000001 212 2 2 2 2l 2 2 2 2 2
Ny =501, j = 251 and k£ > 252. It should be noted that these experiments .
indicate that the number of iterations is bounded independent of ¢ and is Table 5: Number of iterations for problem (2) for ¥, = 101
approximately constant for sufficiently small e. Table 2 and Table 4 give
K, K Kz Si=taftaz ] Sa = tar/tay
a\h 1 05 01 005 001:.0 05 01 005 001 e\ h 105 00 005 001 d 05 06 005 001
01 4;6 10 33 58 202/8 11 26 40 121 1 043 031 016 013 0111106 123 208 333 1000
0.01 414 4 4 4 414 4 4 5 10 01 111 1.22 087 076 0.671127 135 204 303 1000
0.001 414 4 4 4 414 4 4 4 4 00 139 152 156 156 115[161 172 172 1.72 2.50
00001 414 4 4 4 414 4 4 4 4 0001 1097 1.05 1.08 108 108111 1.16 1.19 119 119
000011135 1.52 154 154 154i1.64 161 164 175 175

Table 1: Number of iterations for problem (1) for N, = 101

the speedups 5y = {4/l and Sap = 43 fi,qz, with respect to the direct
method and with respect to algorithm Al. Here {; is the execution time
for the direct method and 141 for algorithm Al on one processor, and ¢4
for algorithm A2 on two processors of the Sequent Balance. It should be
remarked that in all cases A2 is faster than Al. Note that the dominant effect
here is the number of iterations required. In general, one does not expect
a two-fold speedup (that is § = 2) for A2 over either the direct method or
Al since, due to the interfacial problem, A2 is not perfectly paralletizable.
To make an approximate theoretical estimeate of the speedup expected, recalt
that all the problems involved are solutions of tri-diagonal linear systems.
Hence the cost is proportional to the number of grid points. On this basis for
a singleiteration § < 100/(50 + 2ninf ), where ninf is the number of points
in the interfacial region. This speedup is achieved for the overall time only if
K a3 < K, and this requires that there be sufficient points in the interfacial
region. Thus an optimum strategy is to choose ninf as small as possible
sabject to this requirement. In the case of problem (1} here this would give
an optimum 5 = 1.81. The remaining degradation seen in the tables can be
attributed to the overhead for parailel directives and bus contention.

Table 6: Speedups 54 and 54y for problem (2) with N, =101

result in Table 6 for ¢ = 0001 is due to the fact that {4 = 3, whereas
K, = K 43 = 2. This occurred since, after 2 iterations, A2 had only reduced
the error to 9.9e — 5. After 3 iterations it was 6.6¢ — 9. if we had chosen an
error of 5.0¢ — 6 rather than 1.0¢ — 5 this anomaty would not have appeared.
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