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Abstract

We propose an algorithm for the parallel LU decomposition of an upper Hessenberg matrix
on a shared memory multi-processor. We consider the general case of p processors, where p is
not related to the size of the mawrix problem. We show that the LU decomposition of an (m -+ 1}-
banded Hessenberg matrix can be achieved in 0(3“;“2) operations, where n is the dimession
of the matrix and p is the number of processors. For tridiagonal matrices this algorithm has &
lower operation count than those in the literature and yields the best existing algorithm for the

solution of tridiagonal systems of equations.

1. INTRODUCTION

A number of authors over the last two decades have written on paralle] algorithms for solving
tridiagonal systems. (See, forinstance [1],[51,{41.[8L091,0 11,0121, [131,02]). These articles have
considered the problem of solving tridiagonal systems for the form Az = b, 1 <1 < k where
A and al of the by, are known at the stast of the process. In such cases, the computations can be
arranged to produce highly efficient parailel solutions to all k systems simultaneously. It should
be noted, however, that there are & number of common numerical sitgations, for example the
ADI method, where one needs to solve tridiagonal systems where A is known ab initio but the
b;’s are not all known at the start of the computation but rather arise as a resuit of an iteration
process. For instance, consider the classical situation for the application of the ADI method
[10}:

A five-point centered difference approximation of an elliptic partial differential equation of the
form

= (I () un{z, ¥))s —~ (15’2(31)”11(""35 ¥y + oulz,y) = S(x,y), where {z,y) € R,

R is the unitrectangle, 0 < 2,y < 1, u(z,y) = v{z,y) on the boundary of R, and K and K3
are continuous and positive on K.
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If the mesh spacing for the five-point centered difference approximation is taken to be
h = - where n is a positive integer, then the ADI method becomes the following matrix

n41?

iteration:
(Hl + Tm+1 [)um.g..]i = (rm+1[ - vrl)um + k
WM+ rmaa ) Pumyy = (rmal = H1)Pu, 0+ k
where the matrices [, and V are n? x n® block diagonal matrices of the form
Hy = diag(E,E,.. .. E)
W = diag(F F,.... F),

with £ and F known n x n tridiagonal matrices, I is identity matrix, P a known permutation
matrix and {r,, } a sequence of known constants. Because of the special structure of the problem,
each ADI iteration may be written in the form

(E+rnd)(t, 1) = (ol = F){um) + (1)) 1)
(F 4 ral)Plans)?) = (ral = B)P(u,, )P + (£) )
for1 < j <m,m=1,2,,.. where (u,) and (k)\¥) are the j** components of u and &,

respectively, relative to the blocking of /f; and K given above. Thus, for example, (k)7
consists of components {j — 1)n + 1 to jn of the vector &, and similarly for (1,,)%),

From the form of (1) and (2), it is easily seen that for both equations one must solve n
tridiagonal systems of the form Az = b;, 1 < i < n, where the n righthand sides are known.
This n—fold parallelism prompts one to consider attacking (1) and (2) using a parallel algorithm.
In a sequential environment, it is most efficient to factor the matrices (F + r,, J) and { F + ., J)
into LU/ form and then to solve the system using the factored form. We shall demonstrate an
algorithm for LU decomposition in the case of shared memory MIMD computers, which is also
more efficient than the existing direct methods of solution on such architectures.

Moreover, it appears at first glance that there are an infinite number of matrices (£ + r,, 1)
and (F + r,.J) for m = 0,1,.... In practice, however, the constants r,,, m = 0,1,..., are
chosen to repeat after a short cycle of iterates — usually either 2, 4, or 8. From that perspective
one usually has at most 16 n x n tridiagonal matrices, (E+v,, /), m = 0,1,...,7Tand (F+r,. ),
m = 0,1,...,7 which will be used repeatedly to solve (1) and (2).

Since the cost of storing 16 n x n factored tridiagonal matrices is small compared to the
storing of the n? dimensional vector u (provided n is moderately large), in this context, it makes
sense to factor and store those matrices at the start of the iteration. Thus the approach based
on LU/ decomposition has the added advantage, over direct solution, that the factorization need
only be performed once. Each subsequent iteration, with the same value of r,,, requires only
the forward and back solve, thus reducing the cost further.

2. LU DECOMPOSITION ALGORITHM

We shall, in fact, consider the LU/ decomposition of an n x n upper Hessenberg matrix,
since the analysis is not significantly more difficult and the additional generality leads to




63

insights, which produce a more efficient algorithm. Let A = {a;;) be a banded n x n upper
Hessenberg matrix with band width m 41, ie., a; # 0 only when max {1, -1} < j <
min {n,m+i—1},1 < ¢ < n. We will assume that the LI/ decomposition is required for use
in an iterative method of the type described in section 1. Of course, the LU decomposition could
also be used for the solution of any linear systems or to find the eigenvaltues of A using the LR
method [7]. It suffices to consider the case where a;4.1 # 0,1 € ¢ < n -1, since otherwise the
matrix is reducible, and we may consider the LU decomposition of the subproblems resulting
from the reduction. Throughout this paper we will use the convention that any element with a
nonpositive index has value zero.

As in most algorithms for shared memory multiprocessors, the object here is to partition the
problem into a number of subproblems suitable for solution by tasks running on the available
processors. We shall consider the general case of p processors, where p is not related to the
size of the matrix problem. That is, in particular, we do not require that p be much less than
n, or of order n, or much greater than n. We restrict consideration, in this paper, to the shared
memory case since we do not wish to introduce considerations of communication complexity.
On shared memory multiprocessors, these do not exist and analysis is performed solely in terms
of computational complexity, that is the number of arithmetic operations. For simplicity and
compatibility with the analysis of other similar algorithms in the literature, we shall consider all
floating point operations as taking the same time.

We assume that A is known to have an LU factorization, A = LU, where L is a unit lower
bi-diagonal n x n matrix and U = (u;;) is a banded n x n upper triangular, with m non-zero
diagonals, including the main diagonal. The special form of L allows one to readily determine
L7\, One finds that L™ = () is an n % n lower triangular matrix given by

i
. _ s
Lij = 3:1111( b iz (3}
0 i<

Thus the elements of U = LT A, satisfy 1 < 4,7 < n

min{{ 741} R min{s,7+1} ¢
Uiy = Z g:‘sasj = Z H {—Et)asj. (4)
sz i g frrif b sl

As in the tridiagonal case, the well known substitution (cf. [3], pp. 473 - 474)

Y1 =1
=yirfy  i=23.n )
can be used to simplify (4), giving
min{i,j+13 ]
Uy = Z (“1)‘_3%%9‘/% 1< 31] < n. (6)
=g —m41

Since u;1; =0, for 1 < j < n — 1, (4) yields the following Hnear systems for the unknowns
Vit
y=0, /<0 , y=1
: s : )
Yistgieg = 9, (=1 pay,  1<i<n—1,

s=F-m4l
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it is clear that (7) defines an m + 1 banded mriangular linear system
Ty =e. (8)
where
1 if i=5=1
ti =4 (1) a0 JEi, 11
0 i>i
Thus the problem of finding an LI factorization of an upper Hessenberg matrix reduces
to solving the banded triangular system described in (8) to obtain the y,’s and then using the
solution of that system to evaluate L and U, In practice, . may be determined from equation
(5). Todetermine I/, note first that the elements of the (m - 1)" super-diagonal, u; ;4.,_; satisfy
Wiggmal = @iipm-], fOFL=1... n-—m+ 1, Also Uy; = ay; forj =1,...,m. Thus these

elements do not require any calculation. The (m — 2)™ super-diagonal may then be calculated
from the {m — 1}* using

Lt pnie2 + Uimpind = Gimiin2,? = 2,0, —m+ 2.
Similarly, the ™ super-diagonal is given in terms of the (7 + 1)" by
f’iu,;],ﬁ_,- + Ui G = (1,"5;_;_.;,1' =2,...,n—] (9)

Note that each element depends only on a single element of the next super-diagonal and on
known values from L and A. Thus, the calculation of each super-diagonal of U/ is perfectly
parallelizable. In fact, the main diagonal may be obtained using ! division rather than the
multiplication and subtraction in (%) by

Ui :ai-{‘l,f/gi%h?" :2}"'371‘ (IO)

Further, the calculation of the super-diagonals can be chained, since the dependency graph for
U, using {9} and (10}, is

e © s @ - e 0 0 0
0 ¢ | | I | 0

U= ® {11y
0

where e indicates that the value is already known or can be calculated from L and A, and |
indicates that the value at the tip of the arrow requires that at the end, in addition to values from
L and A.
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Thus the calculation of L using (5) requires n.— I divisions. From (9), the elements of the j*
super-diagonal, for j > 0 can be calculated using 1 multiplication and 1 subtraction, and from
(10} those of the main diagonal can be calculated in 1 division. It is clear that the number of
elements in the ™ super-diagonal of U/ is n — j for j = 0,...,m — 1. Note that for all elements
of the (m - 1) super-diagonal and for the first element of each of the other superdiagonals no
calculations are necessary. Hence, the total computations for U is
-2
(n-1+23 (n—j~1)=n2m—3)~(m*—m—1). (12)

j=1

3

The latter term is negative for m > 1. Hence we get the following upper bound for the
complexity of calculating U
n (Im —3).

Note that in the case of a tridiagonal system, m = 2, (12) reduces exactly to n — 1. Hence using
pprocessors L and U can be calculated in the general case in

2n(m —1
2=y (13)
p
parallel operations, and in the special tridiagonal case in
2[(n ~1)/p] (14)

parallel operations. There remains only the solution of the triangular system Ty = e,

3. ALGORITHM FOR THE TRIANGULAR SYSTEM

In [5], Lakshmivarahan and Dhall present an algorithm for calculating the LU factorization of
atridiagonal matrix. Their algorithm used the substitution given in (5) to produce a linear system,
which is eqnivalent to that described by (8) with m = 2. Our algorithm is a generalization to
the upper Hessenberg case of the algorithm presented in [5]. We remark that the improvement
produced in the generalization leads also to a more efficient algorithm for the tridiagonal case.

In order to partition the problem we set

25 = (Yjmmats Yiomazs i), 17 <,

andlet B;,1 < j < n—1,bethe m x m matrix

g 1 0 ... 0
6 0 1 :
BJ' = : . 0 (15)
0 0 1
oo L
where b 1= (~1)"""a;_myijfaje1; 7= 1,2,-++,n — 1. We obtain from (7) the m-vector

iteration
2_?"*'1:83'25 j=1:2>"'anm1' (}'6)
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In order to evaluate vy, 12, - - , ¥, ONE MUst compute
k
Zhmt1 = (H C';) 7, k=123, N:={{n~—1)/m]. {17}
fo=l
m w1
where C; 1= H B;j,1<i< N-land(Cy 1= H B;. Tocalculate the required
Jufi=1jm$1 F=(N~-2}m+1

k
products H Cy, k= 1,2,.--, N, one uses a variant of recursive doubling. Let 7, = C# and

izl
Zi=C4, 1 =2,..., N, then, assuming we have g processor groups, ecach group first calculates
(k=1)M 41
Dy = H Zivk=1,...,9,1=1,...,M = N/g.
i=(k—T)M+1

Then the g processor groups execute the following algorithm:

for i := 0 thru log(g) — 1 do
{distribute the g/2 independent calculations found in the }
{ 7 and k loops below among the g/2 groups of processors }
for j 1= 2" thru ¢ — 2% step 2! do
fork:=j+ 1thmj + 2 do
{using 2 groups calculate }
for ! :=1 thru M do
Dr,k = D[,kDM,j

It is easily seen that after the execution of the above algorithm Dy = (HEZ‘II}M H o). Note
also that, for fixed ¢, the products for j = 2% -are each a product of the form Dy 1= Dy D s,
which is a matrix—vector product, while for j > 2' the product is a matrix-matrix product. For
the purpose of simplifying the complexity analysis, assume that n = Nm + 1, p = ¢(2m — 1)

where g is a power of 2, and N = gM. Let us now analyse the stages separately.

Initializarion

One must first calculate the entries &/ of the B;. There are m{n — 1) of these, half of which
require only a division, and the other half, which also require a negation ( or multiplication by
—1). Thus the p processors must do 3m(n — 1)/2 operations which takes

[3m(n —1)/2p]. (18)

Stage 1
Caleulate the (), T < i < N, using g processor groups. Each group calculates M = N/g of
these. Since

im
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the formation of C; requires m — 1 produocts of B; by the partially formed C;. If these product
are formed by starting with B;,,, and working down, then each product of the form
II Bik=12...m

Jmim—k+1

has k rows, with m possibly nonzero elements, and m — k rows, with one 1 and m — 1 zeros.
Moreover, any column of B, . contains at most 2 entries, one of which is a 1. Therefore,
forming

Earts

I 5

Fuimek

requires a multiply and an addition for each of the m non-zero values in each of the & rows (plus
the time for copying elements which we neglect). Using m of the processors in a group, the
total time required to calculate each C; is 527! 2k = m(m — 1). With each group calculating
N/g of the (7}, one finds that the total time for stage 1 is

N(im —1im/fg={n - 1}{(m~1)/g. {19)
Stage 2
The & processor group sequentially calculates all products of the form
(k=134
Di,k: H Z,‘,kml,...)g,l:l,...,M, MmN/(j‘
i=(k—1)M+1

Each group does N/g — 1 matrix-matrix products of size m. Using 2m — 1 processors, any
m—inner product requires 1 + [log(m)] operations. Using chaining the required (N/g — 1)m?
m—inner products can be calculated in

(N/g ~ 1)m® +2[log(m)] = (r — 1)m/g ~ m* + 2[log(m)]. (20)

fime.

Stage 3

This consists of ¢ = logyg stages, in which recursive doubling is applied to the C}’s. For
this stage we regroup the processors into g/2 groups each containing 4m-2 processors. From
the algorithm above, at the i** stage, i = 0,...,¢ — 1 there are 2'M matrix~vector products
and (g/2 — 2*) M matrix-matrix products to be calculated. Each processor group does either
matrix—vector products or matrix-matrix products, but at the ¢tk stage only matrix—vector
products remain,

Ateach of the first ¢ — I sub-stages the multiplication of the matrix—matrix product predom-
inates, and at least one group is always engaged in calculating matrix—matrix products. That
group does (¢ — 1)Mm? m-inner products during the first ¢ — 1 substages and Mm m—inner
products at the last substage. The maximum number of inner products performed during the ¢
substages by any group is, thus,

(g = 1)Nm?/g+ Nm/g = (logg — 1}{rn ~ L)m/g+ (n ~1}/g. 121)
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Assuming that we chain between sub—stages of stage 3, any group can compute that number of
inner products in
(logg — 1}(n — 1)m/(2g) + (n — 1)/(2g) + 2[log(m)]. (22)

For a general upper Hessenberg matrix with band width m + 1, combining (18)-(22), the
time required to calculate its y;’s in this fashion is

in; [6m2 —-2m+ 14+ m(2m - 1}log <2mp__ 1)} + O(m). {23)
We formulate the result here in terms of p and m, since we wish to compare it with methods
involving different partitions of the problem, In the tidiagonal case m = 2, and this reduces 0

n [21 p
— | = +3log(z)| . 24
2[5 +3t0e) 4)
Thus, from (13) and (23), the total cost of an LU factorization is
n 2 _ 2 _ P
5 {Gm +2m — 3+ (2m* — m)log (Zm — 1)] + O(m). {25}
In the tridiagonal case, by (14) and (24), the cost of producing an LU factorization is
n [25 I
- = £ . 2
p[2 +3log(3)]+0(1) (26)

If one’s goal is to solve the linear system Az = b, in addition to solving (8), one must also
perform the backsolve by solving the banded triangular systems Lz = band Uz = 2. In the
tridiagonal case, this may be done by casting it as the solution of two linear recurrences, similar to
(2.3) and (2.4) i [5]. The recurrences may then be cast in the form z; = o2, + f; and solved
using Algarithm A and Algorithm Y from [5]. The complexity invelved, in the tridiagonal case,
is 2n/p, to cast the analogue of (2.3) in [5] in the appropriate form, and 3n(2 + log(2p/3)}/p 1o
solve the two recurrences, using Algorithm A and Algorithm Y. Adding these gives a total of

n 2p
— log{—)). 27
~(8+3108(3)) @7)
The cost of solving for one righthand side, given by (26) and (27), is thus
n [5‘1 +6log (E)} +0(1). (28)
pl2 3

4. CONCLUSIONS

In the fridiagonal case, the algorithm is not only better than existing algorithms in the
literature for LU decornposition, but also has better computational complexity for the solution
of a single eridiagonal system, as indicated in Table 1, where n’ = n + 1 = 2,

Further let us consider again cases, such as the ADI method discussed in the introduction,
where A is known'in advance but the b; are not. Comparing this algorithm with methods, such
as Recursive-Doubling, which do not perform the LI decomposition, a further improvement in
computational efficiency results, since one need only perform the forward and back solves, for
each right-hand side, rather than performing the ful] elimination.
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Table 1
Comi)]exity of the solution of a single linear system for tridiagonal matrices.
Processors Time

Serial Gaussian Elimination | 8n

Recursive Doubling [3] n 24logn

Odd-Even Reduction [3] n'/2 19iogn’ — 14

(Odd-Even Elimination 3] n' 14logn' + 1

Lakshmivarahan Dhall [5] nf2 18logn

Lakshmivarahan Dhall {5] 7, 3<p<3nfé4 (n/p){25+9logp/3] 3

Algorithm described here P (n/p)47/2 + 6logp/3]
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