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Abstract

We will describe a finite difference code for computing equilibrium configurations, of the
order-parameter tensor field for nematic liquid crystals, in rectangular regions, by minimization
of the Landau - de Gennes Free Energy functional. The implementation of the free energy
functional described here includes electric and magnetic fields, guadratic gradient terms, and
scalar bulk terms through fourth order. Boundary conditions include the effects of strong
surface anchoring. The target architectures for our implementation are SIMD machines, with
interconnection networks which can be configured as 2 or 3 dimensional grids, such as the
Wavetracer DTC. We also discuss the relative efficiency of a number of iterative methods for
the solution of the linear systems arising from this discretization on such architectures.

i. INTRODUCTION: THE PROBLEM
We consider a finite difference approximation of the equilibrium configuration of liquid
crystals in a slab,
Q={{z,y,2):0<2<a,0<y<b0<2< ).

Following Gartland [4}, we will use the Landau-de Gennes formulation, and seek a tensor order
parameter field Q that minimizes the free energy of the system. In this case, the free energy can
be expressed as

F(Q) = vui(Q '}F“ JLsurf / fvoi } + j‘;‘n fsulf(Q}a

where Q(x) is 4 3 x 3 symmeiric, traceless tensor and where Q and §Q represent the interior and
surface of the slab respectively. In this implementation we limit ourselves to strong anchoring
on the surface of ). This corresponds to Dirichiet boundary conditions on ¢;,7 = 1,...,3, and

in such cases
surf ] fsurf
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The term Fl,{Q) represents an approximation of the interior free energy. To describe Fiq{Q),
we will use the convention that summation over repeated indices is implied and that indices
separated by commas represent partial derivatives. With these conventions Fig{(J) has the
following form, (see, for instance [9]):

i 1 i 1
Srat(Q) 1= ELlQaﬁﬂQaﬁm + 'iLZQaﬁ.ﬁan + i‘LﬂQaﬁﬂQm,ﬁ -+ —Z-Airace(Qz)

—%B trace(Q’) + %C’ trace(Q*)* + %D trace( Q% )trace((*) (1

i 1
+ g M trace(Q) + 2 M trace(Q" — AiwexHu Qi Hy — Acmax EaQus By

where Ly, Ly, and L, are elastic constants, A, B, C, D, M, and M' are bulk constants, and H,

AXmaxs I, and Aeyox are the field terms and constants associated with the magnetic and electrical
fields respectively.

For P ¢ Q, the tensor Q{ P} will be represented in the form,

QP = (Qaﬁ)i,ﬁm

= q{ Py + @(P)ga + qu(P)és + @ P)da + gs(P)bs
f—jﬁ 0 0 o0 0
= aP)| 0 BB o |+e@p)| 0o B3 9
0 0 = o o =
0 2o 0 0 2 00 0
+o(P)| 2 0 0 |+a(P)] 0 0 0 [+a(P)]| 0 0 £,
0 0 0 20 0 0¥ 0
simifar to that in Gartland [5}, where {¢.(P)}3_, are real-valued functions on Q.

2. THE IMPLEMENTATION

To discretize our probiem we begin by dividing the slab Q into [ x J x K regions
v(i, 0, k) = {{z,y,2) 1idz <o < (i + 1Az, jAy Sy £ (7 + DAy, bAz < 2 < (k+ 1Az}

for6 <: <7107 < J-Land0 <k < K—1,whereAr = afl Ay = b/J, Az = ¢/ K.

Using the points P = (x, y,, 2 ), where z; = iAzxy; = jAy,z, = kAz, which are located in
the lower left-hand corner of the (7, 5, &), we represent the discrete interior free energy integral
by

S @) % 3 Fa(Qlei 5, 7)) x volumelu(s, 5, &) @

Lk
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Note that (1) involves derivatives of the functions {g,{ P)};_, with respect to the z, y, and
# coordinates.  For interior points P, these derivatives can be approximated using central
difference approximations.

Thus, we have the following approximation of the Landau-de Gennes free energy which
is second order accurate:

Fle) = zk Sl @ (i, 45, 21)) % volume(v(i, j, k) = Zk bz, ys, 2e) (3)

With the discretization (3), we have reduced the problem to one of minimizing Togn bz s, 22)
over all choices of {g:(x:,y;, z:)}3-,. This unconstrained discrete minimization problem can
be attacked in the standard way. That is, seek a solution of the non-linear system of equations

R BE:L 1 h($",y‘,2k)
g(h,7, 7, k) = =20 -
Q'f(m?ayﬁazfc)

=0, (4)

for0<:</,0<7<J,0<k<K,and?=1...5. A standard approach, to solving
non-linear systems such as these, is to use Newton's method (see [3]).

Bach iteration of Newton’s method involves solving a linear system, whose matrix is the
Jacobian of {4}, and then using that solution to update the iterate and the Jacobian, after which
the process is repeated. For the three dimensional problem under consideration, this linear
system is extremely large. A moderate sized problem would involve 107 unknowns. As our
ultimate aim is to track the minimal energy state as the temperature varies, we need to be able
to sofve the minimal energy problem, as described above, rapidly and to moderate accuracy for
each of a large number of successive temperatures. As such a task is probably only feasible on
a massively parallel computer, we choose to implement our minimization problem on such a
computer, In the next section, we will describe the type of computer architecture we use for our
implementation, and sketch the details of that implementation,

3. THE ARCHITECTURE

Our target architecture is a massively paralle} SIMD computer. This class of computers, is
called Single Instruction Multiple Data stream (SIMD), since each of the processors execute
the same instruction in lock-step on the data stored in its associated local memeory. A facility
is also provided to select a subset of processors, by masking the other processors. Only the
selected processors execute the instruction, while the masked processors remain idle. This
architecture is considerably simpler to implement and program than the alternative Multiple
Instruction Multiple Data stream (MIMD) machines, in which each processor can execute a
different instruction. The SIMD architecture is normally used for massively parallel machines,
having between 4096 and 65536 processors, each with local memory. The processors are
normally connected by a special purpose high-capacity communication network and controlled
by a front-end processor. Early examples of this architecture included the Thinking Machines
Corporation Connection Machine CM-1 and CM-2,

The platform chosen for this implementation was the Wavetracer Data Transport Computer
(DTC), situated in the Department of Mathematics and Computer Science at Kent State. The
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front-end sends instructions and data to a contrel unit, which decodes these instructions and
broadcasts both instructions and data to the processor array. The array processors are semi-
custom 1.5 micron standard cell chips. Each chip contains 32 one-bit processors together with
2 kilobits of fast static RAM for each processor, and associated control and memory error-
detection circuitry. In addition, each processor has access to 8 or 32 kilobytes of private external
dynamic memory depending on the configuration. Each circuit board consists of 128 chips.
The minimal configuration, the DTC-4, has one circuit board and thus 4096 processors, Other
configurations are the DTC-8, with 2 circuit boards and 8192 processors, and the DTC-16, with
4 circuit boards and 16384 processors.

The processors on each circuit board of the DTC-4 can be configured eitheras a 16 x 16 x 16
cube, for three dimensional applications, or as a 64 x 64 square, for two dimensional applications.
The DTC-8, can be configured as a 16 x 32 x 16 cube or as a 64 x 128 square, and the
DTC-16 as 3 32 x 32 x 16 cube or as a 128 x 128 square. The assumption here is that
most applications, correspond to physical problems in 2 or 3 dimensions, and thus a 2 and 3
dimensional interconnection network is the most efficient for their solution. This is in contrast
to the Conngction Machine, in which the processors are connected by a hypercube network.

The traditional mode of solution of problems on a SIMD machine involves assigning one
processor of the array per node in the problem space. To provide the ability to consider problems
with more nodes than are available in the array, the DTC provides the ability to partition the
memory of each processor to provide a larger number of virtual processors. There must be the
same number of virtual processors for each physical processor. The number of virtual processors
per physical processor is called the virtual processor ratio. The controller automatically issues
instructions to the array once for each partiion. Thus the execution time may be expected to
increase lincarly with the virtual processor ratio.

For the minimization problem we are considering, each discretization point, £, of the slab
is associated with a virtual processor. Since the virtual processors are arranged in a rectangle or
cube, similar to the actual processors, this provides an entirely natural mapping of the domain
onto the cubic grid of the DTC, provided we use an equal number of grid points in each direction.

At each point of the slab the tensor order parameter () is defined in terms of the 5 unknowns
{g¢(P)}e=15. In our implementation, each set of 5 unknowns {qg:( ) }-1 5 is stored in a single
virtual processor. Foreach {gq.(P)} s- s there is also a corresponding row of the Jacobian matrix.
The nonzero constants of that row are also stored in the memory of the processor associated
with the discretization point P. Each non-zero constant, in a row of the Jacobian associated with
P, also corresponds to another virtual processor (which in turn corresponds to a discretization
pointy with which the values of {g/{)}s1s at P must be communicated when the Jacobian
matrix is updated. The set of processors with which a given processor, P, must communicate in
order to update its row of the Jacobian is called the stencil of P. If the stencil of any processor
is large, then the process of updating the Jacobian at each step of Newton’s method will be
expensive, Fortunately, the finite difference approximation described here yields a relatively
small and compact stencil. In the problem discussed below, the stencil will consist of the all
processors which are at most one step away from the given processor.
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4. INFINITE SLAB CASE

In this paper we shall confine our consideration to the case of an infinite slab. Assuming the
slab is infinite in the z-direction and imposing boundary conditions, which do not vary with z,
effectively reduces the problem to a two dimensional problem on a rectangle:

Qi={{z,1):0<z<a 0<y<b)

To further simplify the problem, we consider a lower order approximation, the so called reduced
model, where Ly = Ly = D = M = M’ = () and there is no electric field E. Thus we have

fa{Q) = ;:L]Qa’ﬁﬁ@aﬁ;y + %A trace {Q%) — %B trace (Q*)

i
+ZC frace {QZ)Z - AXmaxHaQt!ﬂH.g‘

Using the previously defined representation for the tensor Q(F) the above functional can be
written in term of the ¢;’s:

I, 1
fia @1y e199) = 3 LaV@P 4o+ Ve + AW+ + )

1 1

— Axwax o q1é1 + @z + qadbs + qscha + gshs ) Hp,
where d is a polynomial of degree three given by

V3 V3
dagi,...,q5) = —-6“(0?+Q%)+“§“(91+Qz)(f1§—qu)

3443 3-43 , 343 %+\f

+ (- ) ¢+ 7 g2y +{ PR )fIerfffa%%

The Euler-Lagrange equations for the reduced model form a system of five non-linear elliptic
partial differential equations:

~Li Vg + Aqi — BWi(qu,. .. Jgs) + Clat 4+ g2 = Axwan Haléilas Hp,

where
Wilgr,...,q5) = 763( ~2q102 ~ G} + ¢3) — tzﬁfﬁ 2 :fgq?,
Walgr,- .., q5) = %( 2t @+ )+ —lz\/gqf -3 4;2\/%%’
Wilgu,...,q5) = ?(fh +q2)gs + —\%Ms,
Welqr,...,q5) = {~—-3 +6\/§q1 + 3 —6\/55‘{2)({4 + -}2“{13%,
3-v3 3443

Wslgi,...,q5) = (

1
A 92)95%——\75(]3614-
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Discretizing this system of equations produces the discrete Euler-Lagrange equations. Using
standard central-difference approximations for the partial derivatives produces a five-point
stencil at each nodai point in the domain. Since nearest-neighbor communications are efficient
on the Wavetracer’s mesh array of processors, the communication costs are minimal,

In order to solve the resulting non-linear system of equations we use Newton’s method. Let
G 1 R* — R™ be a function representing the discrete Euler-Lagrange equations. There are a
total of 5(1 — 1) x {J — 1) non-linear equations in this system. The function &7 depends on the
Sn unknowns

G(x) = G (q-il" "'7q517q121' - '7Q§J"'7QI"?" ‘q?)?

where n = (I — 1) x (J — 1) is the number of nodal points. Let '(x) be the Jacobian of the
system of equations. Newton's method is as follows:

1. Choose xo
2. Fork=10,1,2,...

(a) Solve G'{x)sp = —G (%)
(b) Set X4l = Xi + Bk

The method requires solving a large sparse linear system G (x; }s, = — /{3 ) and then updating
the unknowns. In theory, Newton’s method requires the exact solution to the linear system for
each Newton iteration. Inexact Newton methods use some form of iterative procedure tor
solve the linear system approximately. Several iterative techniques such as SOR and mutti-
grid were tested on this problem with varying success. Note that the matrix A 1= G'(x;) is
singular at bifurcation and turning points and can be indefinite near these points. This can cause
convergence problems when soiving the inner linear system.

A major concern is to determine how accurately should one solve the linear system before
doing the Newton update. In the early stages of the Newton or outer iteration, the linear system
need not be solved too accurately, since x, is relatively far from the true solntion x*. Thus only
a few inner iterations of the linear solver need to be performed. In later stages as x, gets closer
to the true solution, the inner system will need to be solved more accurately. This is precisely the
philosophy of the inexact Newton method. Since inner iterations are expensive, one should not
do any more than necessary. A common criterion used to determing how many inner iterations
are needed is as follows: B

1. Let xg be given
2. Fork=0,1,2,...
3. Determine n€[0, 1) and s, such that

NG{xk) + G'{(xa)si]
el -

Nk (5)

4, Set K41 = Xy + 8%
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The quantity on the left of inequality (3) is called the relative residual, that is the residual of the
inner iteration divided by the residual of the outer. Expression (5) may be interpreted intuitively
as indicating that we should iterate until the inner residual becomes “small” enough, then do an
update. Common choices for n,, include:

b ong = 2k1+;
.
53
. 1
min{|G{xi )|, gz }-
Any of the above choices for n; will guarantee at least linear convergence of the outer iteration.

For the numerical results presented later on in this paper the choice of ny = ;;;3 was used, as
extensive numerical tests revealed this to be, on average, the best choice,

2. Top 1=

il

3. ng:

5. ITERATIVE SOLVERS

Several classical iterative schemes were used to solve the inner sparse linear system for
q15-..,¢s at each nodal point. Each method had certain advantages and disadvantages when
used as a solver on the Wavetracer. The following schemes were tried for the numerical
simulations:

1. Red-black SOR (sorrb)

2, Multi-level red-black SOR (ml-sor)

3. Multi-grid (m-grid)

4. Multi-level multi-grid (ml-mg)

5. Preconditioned conjugate gradient (pre-cg).

All were implemented as point-iterative methods. Other natural schemes would involve blocking
the q1, ..., g5 at each nodal point and using a block-iterative technique such as block-SOR.

A red-black coloring scheme was used for the SOR iterations [8] in order to introduce
parallelism into the method. One should recall that, with red-black ordering, the Gauss-Seidel
method decomposes into two Jacobi steps on the half size systems resulting from the coloring.
Unlike the original Gauss-Seidel method; the Jacobi method is highly parallelizable. The red-
black SOR produces similar benefits, Only two colors were needed in the case considered
here, since there is only a 5-point stencil at each node. In the full model more colors would
be required, since the stencils are more elaborate. The optimal parameter w was chosen as that
from the simple Laplacian model since the matrix in our linear system has a similar structure to
the Laplacian matrix. Numerical experimentation showed that this was a good chotce for our
reduced model and gave good convergence results.

The philosophy behind the multi-level schemes {1, 6} is as follows. The problem is solved
on a coarse grid to a certain precision. The results are then interpolated to a finer grid and used
as initial starting values for these iterations. A sequence of successively finer grids is used. The
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finest grid is the one of interest, It is hoped that providing good initial guesses will reduce the
amount of work needed to obtain the desired accuracy on the finer grids. This effect is observed
in the numerical simulations.

Multi-grid methods [2, 7} are a class of fast linear solvers which are widely used. These
methods performed well in our numerical simulations. The idea again is to solve the problem
on a series of coarse and finer grids. When multi-grid was combined with a multi-level scheme,
it performed exceptionally well. Multi-level multi-grid uses multi-grid as the linear solver on
each successively finer grid. Multi-level V-cycle multi-grid gave the best overall performance
in our numerical simulations.

Preconditioned conjugate gradient [8] did not perform as efficiently on this architecture and
thus was not as competitive as the other methods discussed. This may be explained by the fact
that the algorithm requires many dot products, which are not-efficient operations on a SIMD
machine like the Wavetracer. Several pre-conditioners were tried and the performance of all
were essentially similar. Symmetric red-biack SSOR [8] was chosen because of its simplicity
and because it was easily parallelizable.

6. NUMERICAL RESULTS

To illustrate the comparative speeds of the different solvers a test problem with known
solution was used. The solution was assumed to be

2
g1 = I, qzm,qr;z, B=Y, 4=y, g5 = Y,

the corresponding right hand side was generated, and appropriate Dirichlet (strong anchoring)
conditions at the boundary were used. The simulations were performed in double precision on
a Wavetracer DTC-4 with a 64 x 64 grid of processors. The number of points was assumed to
be the same in both the z and y directions. In addition to the residuals, the errors can also be
computed after each outer iteration, since the true solution is known. Initial guesses in all cases
were chosen so that the initial maximum error at all points, except the boundary points, was
1.0. The initial maximum residuals for the n = 32,63 and 64 cases were 2.1(3), 7.9(3), and
8.2{3) respectively. The iterations were continued untl the maximum residual for the system
was reduced by a factor of 10°. Table 1 gives the results of these numerical simulations,

The Wavetracer DTC does not itself contain a micro-second timer, Consequently, all timings
must be performed on the Sun 3/50 front end, The columns real, user and syst give the real (wall
clock) time, the time spent in systems tasks related to the program, including input/output, and
the time spent in executing user code on the front end. The input/output time includes time spent
accessing the SCSI bus and thus time spent sending instructions from the front end processor
to the sequencer of the Wavetracer. User time includes time spent executing the sequential
parts of the program. The majority of the remaining real time is time elapsed while the DTC
is executing parallel instructions. Maximuom residuals and errors are computed over all grid
points for g, ..., gs. For the multi-level schemes the number of outer iterations performed at
each level are given in parentheses in the last column of the table along with the total number
of outer iterations needed for convergence.

In the sequential case, results in the literature would lead one to expect that the multi-grid
method would converge with less iterations. This proves to be the case here also. The multi-grid




