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Analysis of Multiple Turning Point Problems

Relja Vulanovi¢ {Novi Sad, Yugoslavia}
Paul A. Farrell (Kent, Ohio}

Abstract. Four types of linear singularly perturbed boundary value
problems with a multiple interior turning point are considered. Rep-
resentations of their sclutions are given in terms of boundary layer
functions and remainders which are bounded.

. Introduction

We shall consider the following singularly perturbed two-point bound-
ary value problems:

—eu” + wFb(e) +e(z)u = f(x), el =[-1,1] (P

w(~-=U", w(l)=UT, k
with a small positive parameter ¢, k € N\ {1}, given nvmbers U* and
sufficiently smooth functions b, ¢, f € C*(J), s € NU{0}. We shall as-
sume throughout that these functions and their derivatives are bounded
uniformly in ¢, and that

b(z) > by > 0, (1)
cle) >0, we I, ¢{0)>0. . (2)

The coefficient of the first derivative:

ale) = x*b{a), 3)
vanishes at z =0 only, and this is an isolated interior turning point of mul-
tipiicity £, A problem with a boundary multiple turning point is considered

in [7] (the problem is the same as (P,) but on [0,1]). Here, not only the
“47 and “-7 signs of (PF) are important, but also even and odd values of
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k. Thus we shall consider four possible cases. Three of them have solu-
tions with boundary layers, and in ope case there are no layers at all. This
means that layers do not occur at the turning point. For the three cases

solutions, and they can be used in construction of numerical methods which
ate accurate uniformly in e. This has heen done for some other types of
singularly perturbed boundary value problems, e.g.: in [4] for non-turning
point problems, in [1] and {2] for single turning point problems, and in [7] for
the boundary multiple turning point problem. Paper [6] doals with a single
turning point problem also, but only derivative estimates of the solution
are obtained and used in the appropriate numerical procedure, The same
is true for [5] which deals with a general turning point problem, including
(PE). Our paper differs from I5] not only by giving the solution represen-
tations, but by a weaker assumption on the function ¢ as well, Besides [5)
and {7] there are not many papers dealing with muitiple turning points, We
can mention {3] where asymptotics of general homogeneous turning point
problems was considered, but the asymptotic expansions derived are not
quite suitable for numerical methods.

I sections that follow we shall consider the four cases of (PE). In
essence, our technique is a combination of the techniques from [1] and
(5], see [7] as well. We shall use inverse monotonicity of linear second order
differential operators. We say that an operator 4 is inverse monotone {im.)
on {zy, 2] C T if the following implication holds for any C*(I)-functions g
and ys:

Ay} > Ays(z), = € [y, 20], and Yi(z;) > yoley) = 1,2
= ni(e) 2 p(e), 7 € [y, 2],

It is well known that because of (2) the operator corresponding to (PF) is
inverse monotone on 7. From this it follows that (PE) has a unique solution
u € CPFE(]),

Throughout this paper A7 shall denote any (in the senge of 0O(1)) posi-
tive constant independent of ¢. Sume particular constants of this type will
be denoted by M, My, ete. Also, y will denote an arbitrary C* I-function.

L. (PM) with k even
Let us introduce the following operators:

Liv=—ey" 4+ alx)y' + q;(x)y, ;= 0,1,...,s,
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where K
g;(2) = c(z) + ja{z),

and a is given by {3} with k even. In this section, we consider the problem
Lou=f(z), z€l, ul£l)=U*%, (4)
but we shall analyze first the auxilary problem:
Lov=r(z), zel, »(l)=Ut, (5)
where r satisfies:
()] < Mol 4 e Vexp(B(e — 1)/e)], i = 0, L...,s,2e1, {6)
with 0 < 8 < b., b, given in (1). We have
Lemma 1. For the solution v to the problem (3) we have
(@) < M1+ e~ exp(m(z — 1)/e)), (1)
where i = 0,1,...,s, z € I and m is some constant from (0, 8).

Proof. Noting that ¢;(0) = ¢(0) > 0, we conclude that there exists an
interval D = [~6,6], with § € (0,1}, such that

9i(2) > q. >0, zeD.
Then all the operators L; are im. on D. Moreover, Ly is i.m. on the whole
interval I.
Let us prove (7) for i = 0 and =z € I. Let
gl&) = Mi(2+ 2) + My exp(B(x ~ 1)/¢),

where M; and M, are to be chosen so that

Log(x) > £r(x) = Lo(xu(2)), zel (8)
Therefore

Lag(s) 2 Mafa(z) + 2+ 2)e(w)] + M fo(z) ~ A exp(0o — 1/6)

There exists a point # € (0,1) such that

a(z) =8> b 0" ~ B = a>0, x € [8,1],
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and we can choose M, so thab
Mgﬁ(]f 2 Mo.

Then, because of

N

a(z) + (24 z)e(2) = boa® + e(z) > vy >0, ze1,

My can be chosen so that (8) holds (note that all the exponential terms are
bounded uniformly in £ outside of [#,1]). Moreover, M; should be taken so
that

g(x1) 2 U],

which together with (8) implies
w(z)] < glz), =€,
and {7) is proved for i =0, z & I.
Next we shall prove that (7) holds for i = 1 on [ay, 8] ¢ D, where
oy € (6,0} is such a point that
[0 (en)] = 167 (0} ~ v(-6)]] < M,
and 8, € {0,46) is chosen similarly, so that

B M.

The Jast two inequalities together with the inverse monotonicity of L, on
[, 1] complete this part of the proof. Indeed, on [ay, 5] we have

Li(dv'(z)) = £[r'(a) — ¢(2)o(2)] < M < Lt My,
with some appropriate Ms.

Simifarly, we use Liv!"), i = 2,3,. .. s, on suitable subintervals [a;, 5] of
D. For instance, §; € (0,6) is taken as follows:

"' (B3] = 16 2[wl8) — 2?;(—3} + o{(D] < M.
Thus we conclude that (7) holds for i = 1,2,...,s and « € [, A] C D

Gy = max a; <G, f.= mm 5 >0
i<i<s 1<i<s

Now let x € {~1, 0.] and let

o(z) = f a(d)d.
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Then
—elexple(2)/e)v'(2)]' = [r(z) — c(a)v(z)] exp(ip(z)/e)

and after integration we get"

@ < M [ explo(t/et + (o)) expl—plae) <

gM[1+s‘1f

T

o

exp{(p(t} = p(z))/elat]. (9)
Since for £ <t < o, we have
o)~ p(z) < boal(z — 1),

from (9) we get [v/(2)] < M, i.e. (T)fori=1and & € [-1,o,). Then we can
prove (7} for i = 2,3,... 5 on the same interval, by differentiating {5).

It remains to prove (Mfori=1,2,...,5 2¢ [B+, 1]. First we show that

PO < Me™ i=1,2.. s (10)

For i = 1 this follows from integrating (5) from ¢ to 1, where £ ¢ {(1—g1)is

given by
€)= e o(1) ~ u(1 - )]} < MeT.

Then (10) follows for i =2,3,... s directly from (5).
Let z € [8,,1] and les

¥(z) = /: aft)dt.

We apply the same procedure as in {9), noting that in this case r is not
bounded uniformly in €, (6). We get:

[v'(2)] < M(P +Q),

P=c / (1 exp(B(t - 1)/e)] expl((t) - v(a))/cldt,

@ = [o'(1)] exp{—p(z)/e).
Setting p = min{3, b, 8%}, we obtain:

1
P< 6‘1/ (14" exp(p(t — 1) /e)] exp(p(z ~ t)/e)dt

S Me™H(1 = @) explu(z — 1)/e) < ML+ exp(my(z — D/e),
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where ms € (0, p). Similarly we get
0 < Me~ explmy(z — 1)/e),

which completes the proof of (7) fori=1, z € i8., 1] (with m < mq ). For
i=9,3,...,s we apply the same method fo

—enttH ) + a(z)'{(z) = hia (@),

where h;_; contains derivatives of v and r up to the order ¢ — 1, and thus
can be estimated. Then it follows that:

W ()| < ML+ e explms(z = 1)/e)l
with my > mg > - > my > 0. This means that (7) holds with m < m,.
We are ready now to give the representation of the solution.
Theorem 1. For the solution u fo the problem {4) satisfies
ulx) = pexp[b(i)(z ~ 1)/e] + z(z), =€l
where pl < M and z s @ differentiable function salisfying
20 < M1+ e lexp(glz — D)}, =z €1 (11)
fori=0,1,...,s and some g € (0, b.). Thusu has a boundary layer at & = 1.

Proof. Let p= ew/(1)/8(1). Then we have Ipl < M since u also satisfies
the estimate (7). Let

w(z) = pexplb( )z - 1)/¢].
Then z(z) = u(z) — w(x) and thus
(-1 < M, £{1)=0
Farthermore,
Lo (2} = f'(x) — [Low(a)] — a'()'(#) ~ (@)2le) = b,
and we shall show that
RO (@) < MIL+e exp(Blz = D/e)l, =€, (12)

fori=0,1,...,s—1. This will mean that 7/ satisfies an equation of type {5)
and thus the derivatives of 2/ satisfy (7), which gives (11).
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Let us prove (12). For z € T we have
[2{2)] < (@) + |w'(#)} < M1+ e exp(B(z — 1)/¢)]
and
[Low(@)'| < M{1+ ™ u(e) +e2(1 - wu(e)] < M{1+ ¢~ exp(A(z ~ 1)/e)].

Then it follows that (12) holds for =0, and for i = 1,2,...,s — 1 the proof
is similar.

2. {(P,) with k even

This case reduces to the previous one by changing z to —z. This means
that the solution to this problem has a boundary layer at 2 = —1.

3. (P7) with % odd
This case is not so interesting since the solution u has no layers:
!u{i)(m)] <M, zel, i=0,1,... s

The proof can be found in [5]. It uses the same technique as that in the
proof of Lemma 1.

4. (P}) with * odd

In this case we may allow k = 1 as well. We shall denote some quanti-
ties in this section by the same notation as in Section 1, even though the
guantities are not necessarily the same (however, their role is similar), We
shall make use of the same operators L; as in Section 1, except that now &
is odd. Let the function r satisfy

PO < ML+ exp(=Fo (2 + 1)/e) + e~ L exp(fy (2 — 1)/e)], {13)

fori=10,1,...,5, 2 €I, and 0 < By < b,. We shall consider the problem (5)
with such a function ».

Lemma 2. For the solution v o the problem (5) with k odd and r
satisfying {13) we have

() < ML+ &7 exp(—m(z + 1)/e} + £ exp(m(z — 1)/e)],
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fori=0,1,.. .5, 2] and 0 < m < .

Proof. The proof is analogous to that of Lemma 1. We distinguie!
again between the three cases: z € [~1,a.], z € oy, A and z € (4. 1], with
appropriate o, and j, corresponding to those of the proof of Lemma i !
the case when = € [, 5] we use inverse monotanicity of L; on this interval,
The case z € {8,,1] can be treated in the same way as in Lemma 1, since in
this interval

e exp(—f- (v + 1)/e) < M.

Finally, the case z € [~1, ] Is analogous to z & [A., 1].
Theorem 2. The solution u to the problem (4) with k odd satisfies
u() = p exp(=b(~1)(z + 1)/2) + py exp(b(1)(z — 1)/e) + 2(a), 2 € 1,
where {pi| < M and z is a differentiable function salisfying
|2z} < ML+ e~ exp(—g(z + 1)/e) + e explg(e — 1)/2)],

Jori=0,1,... s, 2zl and g € (0,b,). Thus u has two boundary layers at
r=xl

Proof. Again, we use the same technique as in the proof of Theorem 1.
The only interesting difference is that py are determined from the system
z(21) = 0. Then using |u/'(£1)] < Me™? we can get Jpx| < M.
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Analiza problema sa visestrukim povratnim tackama

Relja Vulanovié (Novi Sad, Yugoslavia)
Paul A. Farrell (Kent, Ohio)

Sadrzaj

Posmatraju se Cetiri tipa linearnih singularno perturbovanih kontur.
nih problema sa visestrukom povratnom tatkom. Reprezentacije njihovih
resenja su date preko funkeija graniénog sloja i ostataka koji su ograniteni.



