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Abstract: A linearization method is proposed for quadratic singularty perturbed bound-
ary value problems which model some catalytic reactions. Bach of the resulting linear
problems is solved numerically by using non-equidistant finite difference schemes. Numer-
ical results confirm that the method is uniformly accurate with respect to the perturbation
parameter,

1. Introduction

Singularly perturbed differential equations arise as mathematical models for var-
ious phenomena in physics, chemistry, biology and other sciences. In this paper
we shall consider their application to some chemical problems. We are motivated
by [2], where the following problem has been considered:

—eu + 0" =0, ze(0,1), (1.1)

Q) =0, u(l)+Lu(1)=1. {1.2)

The problem arises in catalytic reaction theory: it models an isothermal reaction
which is catalyzed in a pellet. Here u is the normalized concentration of the
reactant, x is the dimensionless distance from the center of the peliet (z = 0) to
the mouth (z = 1), 1/./¢ is the so-called Thiele modulus, defined as K/ D, where
D is the diffusion coefficient and K is the reaction rate constant. Thus, when
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D << K, we are dealing with a singular perturbation problem (0 < ¢ << 1).
This is the case we shall consider in this chapter. The nonnegative integer
represents the order of the reaction, and X is a non-negative parameter, 1 being
called the Sherwood number. The Sherwood number describes the accessibility
of the pellet to the bulk flow. When §© = 0 the access is uniform, and & > 0
means that there is some resistance.

A more general problem, describing an isothermal reaction on a Hat plate
catalytic surface and involving a change of volume, is given by

~eu” + (1 + fu) "1 + (I+8u)u" =0, ze (0,1), (1.3)

subject to the same boundary conditions as in (1.2). Note that (1.1) is a special
case of (1.3) when ¢ = 0. The parameter 8 is the volume change modulus. There
is no volume change in (1.1), while for # > 0 there 1s an increase in the volume
due to the reaction. The case ~1 < § < 0 is also possible, and it corresponds
to a decrease in the volume. This case will not be considered here. The problem
(1.3) has been analyzed in [21, and the following has been shown for its solution .
u{z), € I:=[0,1]:

05 u(e) < expi(o— 1)/, if B=0, re1,
0 ulla) < [L+p==2]r, it B0, r2o,

0 < ue(z) < 7 pexpl(z— 1)/p), if T> 0, r=1
1l—g
pie+1)

3

05 uez) < B o tpt/rt)y 4 g M R0, r>o

Here, p = /¢ and p and & are two positive constants independent of ¢. Since
the above estimates are sufficiently sharp, the following can be concluded. For
2 > 0 there are no boundary layers, so that these problems are easier to solve
numerically. Because of this, we shall consider only the more difficult case 5 == 0,
When ¥ == 0, u, has a layer at z = 1. The layer is exponential when r = 1,
while for r > 2 it is a power layer.

There is a related problem for isothermal reactions in spherical catalyst
particles, considered in {13]:

—eu 4 ef(1+ 0u) 1P — Zeg 1y 4 (14 0u)u" =0, ze(0,1), (1.4)
subject 10 the conditions (1.2) with 3 = 0. It is concluded in {13] that the

solutions of (1.3) and (1.4} are close when & << L.

We shall propose numerical methods for all three problems. First, we shall
mntroduce a general linearization procedure which produces a monotonically de-
creasing sequence of upper solutions. Its convergence towards the exact solution
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will be proved for the simplest problem, (1.1), in which case the linearization
reduces to Newton’s method. The convergence is uniform in ¢, Each of the lin-
ear problems will be solved numerically by using finite differences on special
non-uniform meshes which are dense in the layer at « = 1. The proof of the
uniform accuracy of the numerical results will not be given, but some theoretical
Justification of the method will be presented. Numerical experiments will show,
however, that the method is uniformly convergent for all three problems. In par-
ticular, the resulis for (1.4) will be compared to those from [13], and a closc
agreement will be found.

Note that some cases of the problems (1.1), (1.3) and (1.4) are trivial. This

s 50 for (1.1) with r = 0,1, and for (1.3) and (1.4) with r = 0. In these cases the
exact solution can be found easily. In particular, (1.3) and (1.4) can be rewritten

in the forms
u !
- =20
E(l-}—&'u) o
and ,
mﬂur. 2.7
— = 0 1.5
g(l—i—ﬁu) + z°u {1.5)

respectively. From this we can see that the case r = 0 can be solved exactly: one
only has to integrate the equations from 0 to z to obtain terminal value problems
which are easy to solve.

2. The Linearization
(1) A General Quadratic Problem

Consider the following quadratic singularly perturbed boundary value problem:
Tu = —eu" + a(z, w)u'? + b(z)’ + e(z,u) =0, ze(0,1), (2.1)

Bu = {ogu(0) — Fov'(0), cyu(1) + B1d' (1)) = (v, 1), {2.2)

where € € (0,1], a, b and ¢ are sufficiently smooth functions, and
a; 20, i 20, oy +8;>0, i=0,1.

Moreover, we assume that there exist two constanis, u, and u”*, such that u, < u*
and
Tu, 0 <Tv, Bu, < (y0,7) < Bu*

>

where the inequalities involving 7' should hold for all z € I and those with
B should be understood componentwise. Thus w, is a lower solution to (2.1-
2), while u* is an upper solution. This implies that (2.1-2) has a solution 4,
satisfving

ufz) e U= {u.,u*], ze&l.
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Note that (1.3) (which includes (1.1)) and (1.4) satisfy this with u, = 0 and
uw' = 1. Next, for z € I and u € U, we assume:
az,u) > 0, cy(z,u) >0,
a(z,u) <0, cuulz,u) >0,
which is also satisfied by (1.3) and (1.4). Note also that the solution U, IS unique
for {1.3) and (1.4), cf. [21.
We propose the following lincarization of the problem (2.1-2):

Lyugr1 = a(z, ug)ud + colz, up)up — c{z,uz), =z e (0,1), (2.3)
Buk—f--l - (70:71): (24)

wherte
Liv = —ev" + [2a(z, up)ug + b(z)]v" + co {2, ux)v, {2.5)
(for a C#(0, 1)-function v) and k = 0,1,.... The itcrations should start with an

upper solution wg such that:

Tug 2 0, Bug 2 (v0,71)- (2.8)

This is not a Newton linearization, but reduces to it when a(z,u) = a(z). For
Newton’s linearization as applied to boundary value problems, sce for instance
(1], 3L (5], [9]. Since (Lg, B) is inverse monotone, each of the linear problems
(2.3-5) has a unique solution augy 1.

Lemma 2.1. The sequence defined by (2.3-6) satisfies
up(z) > uprs(z) 2 u(e), ze€l, k=0,1,....
Proof: It is casy to see that
L (g — i) = Tug.

Thus for k = 0 we get Lg(ug — uy) > 0, and from Buy > Bu, it follows that
ug = uyp. If we show that Tug, > Ofor k = 1,2, ..., the proof will be completed,

Suppose that the inductive hypothesis wg . > uz holds. Then from the definition
of up we get:

Tu = a(x, up_)uld |+ Cul, up—q)up_1 — e{z, up—_1)

— [2a{z, we—1)jujy + bla)|uy, — ewlz, wpy)ue + a(&?,uk}uf + bz uy _

i
+ C‘(E,Uk) = a(z, ukw—l)(u;c - ULAl}z + ’2'(11«16 - uk—l)zcuu(xa nfc}:
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@, < 0 have been used. Thus, Tuy > 0. 0

- This result does not imply convergence of {uz} to u, in the maximum
C(I)-norm (which we denote by |- |}); only weak convergence is guaranteed, cf.
{5]. We shall prove convergence in the C'(I}-norm for the special case (1.1). Our

numerical experiments will show that the convergence is present for the problems
(1.3) and (1.4 as well.

{2) The Proof of Convergence for (1.1)

In this subsection we consider the following special case of the problem (2.1-2):

with some ng(z) € (up(z),ur—1(z)). In the last inequality, up_; > uz and

Tu:=—eu"+u" =0, z€(0,1), (2.7

Bu = (—u/(0), u(1)) = (0, 1). (2.8)

This is the problem (1.1-2) with ¥ = 0. As we remarked in the introduction,
only the case r > 2 is interesting. In this subsection let 1, stand for the solution
of (2.7-8).

The same linearization as above will be applied. Convergence will be proved
with a special initial guess vy which is sufficiently close to wu,. This is not
surprising for Newton’s method. However, due to the structure of the problem,
a special technique of proof will be applied. In some parts it is similer to that
from [3].

In this special case the linearized problem (2.3-5) reduces to:

Lgugqr o= —eug g+ ruf tupy g = (r — Duf, ze(0,1), (2.9)
Bugss = (0,1), k=0,1,.... (2.10)

The following special initial guess ug will be used:
zﬂﬂz4@+y@um@,4@xu+mﬁfrﬁ (2.11)

where . re 1
p = e, o=, m:m.
It is easy 1o see that Bug = (0,1), and furthermore,
Tug(z) = ~e2"(x) + 2(z)"
1—= 1- m]_m —0

b

= -mPafa+ D[I+m—=]""2 L 1 +m
N

where it should be noted that ar = o + 2 and m?a{o + 1) = 1. Thus ug is an
upper solution to (2.7-8).
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Theorem 2.1. The sequence defined by (2.9-11) satisfies
ur(z) > uppr(z) 2 u {2} >0, zel, k=0,1,....
Moreover, if r < r*, the following holds:
luies = uell < Bllun - uell, B < 1. (2.12)

Thus {ux} converges to u, in || - ||.

Proof. That the sequence {uy} is monotonic decreasing in k follows from
Lemma 2.1. Next we shall show that yuy is a lower solution to (2.7-8), with

y=(1+a) e (0,1).

Indeed,
B'T”O - (Oa'T) < (0: 1)’
and
Tyuo(e) < —vy2{z)" +4"[2(z) + 6],
where m
6= alt+ 27 2 2(0) 2 #(0)(1 - ).

H

Singce

it foliows that Tyug < 0, and thus yug < u,.
Furthermore,
Tur S u., k=0,1,....

This can be proved by induction. Assume that ~yuz -~ w, < 0. Then it follows
that

Li{vursr — te) = v(r — Dul +eulf — ru] 'y,

< (r = D (yae — u0) < 0,

and since
Blvur+y — ue) = (0,7 — 1) £ (0,0},

we get

TUk+1 S Y.
Knowing that u, > w, 2 yue > 0, by using inverse monotonicity we can derive
the following stability inequality for any C%(7)-function y satisfying By = (0, 0):

| Ly(z)|
< A S
y(z)] < max L

x eI,
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Then for some ¢ (z) € (v.{z), up(z))

1 -
Ly (g1 — te) = Er(" = 1) ?(ur — ug)?,

and we get

1 -
Li{tupsy — ue) < Er(r = 1)(1 — ~)uy I(uk - ug).

Using this and the stability inequality, we obtain

wir1(2) — uelz) S 5(r = (1 =)o — wl, s T,

5o that (2.12) holds with

B = Bla)= 1.

o

It i easy to prove that 8(«) is a decreasing function, and thus

pla) < Blon) < 8(0) = 1,

where
2
&, T . 0
- r* — 1

The following a-posterior: error estimate follows from (2.12):

flugss = el] < Bllue — yuol|.
In addition, the following a-priori error estimate holds:

!

ket — tell < 05 Huo — well < (1 — 4)85H0

Note that v and @ can be calculated explicitly for any given r, and also that g
is independent of ¢, and thus so is the convergence.

From (2.12) we can see that the rate of convergence is cnly 1, while for
MNewton's method we may expect quadratic convergence. Indeed, the following
lemma shows that the sequence {ug } starts to converge quadratically after several
ilerations,
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Lemma 2.2. For the sequence defined by (2.9-11) there is an index n and a
constant cq such that

o vl < o (20) (2.13)

for all k > n and some v < %

Proof; The idea is similar to that from [7], Let A be the operator from
§={ueC?I)| ~u'(0)=0,u(1) =1}

to C{I}, such that
Alu) = —eu + 0",

We shall use the convergence theorem from [6] (p. 708) to prove {2.13). It can
be verified that

2m el
o — uefi < (m+ p)ort ! (r=L)pye = eqp®, (2.14)
Let vg = Upsn, £ =0,1,..., with n yet to be determined, and let

O={ueS|{lu—vl <ep*}.

We know that A{u) = 0 has a unique solution u, in {2, and since vg > vi > u,,
we have v, € 1, k=0,1,.... Let A'{vg) be the Fréchet derivative of A at vg.
[t is a mapping from

So = {ue C*I)| — ' (0) = u(l) =0}
into C(7}. Then we have: |
A'(vr) (Ve 41 — o) = —e(vpsr — ve)" + "”x’;wl(”k-ﬂ - v) =~ A(vg),

and
g U — —-AI(U())M]'A(UQ),

that is

(4 (vo) " Alvo)ll < flos — wol} = llunrs = ]
< g = el 4 e — 2]
< (B + Dlfuo ~ vell < 1 (8 + 1)F"p.

We aiso have {cf.[9]):

A'(w) = rlr — 10" 7%E, veq,
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where £ is the identity operator. Let V = A'(vp)~*A"(v)y, y € C(I). Then
V € S and A'(vp)V = A"(v)y, that is:

~eV" +rog TV o= A"(v)y, ~V'(0)=0, V(1) =0.
Thus for any v € 2 we have on [

V] < max 2704
Tozel ru{r)_'l

(r = Dfo)=2

< max e il
_ o\ r—2 ;
< max U W0t an) ™,

zEel 0

1 Na r—2
(r = Dmax = (1+ &1 =) Jy]

IA

+ p)* m -+ u)® r—2 —a

< (- o P ey
T g .

. T «
> Z ——
(since vg > yug > T #)a# )
=tean” *|lyll.
Thus it follows that
HA (vo) P A" ()] € equ™, v e

Now choose n so that

1
vz cie(f +1)8" < 3
Then (2.13) follows by the theorem from {6] {p. 708). D

3. Numerical Methods for Linear Problems
(1) The Linear Problems Arising from (1.3) and {14)

The process of linearization described in subsection 2.1 gives a sequence
of linear problems to be solved numerically, The linear problems derived from
(1.3) and (1.4) have the following form:

Lugys = —eugyy + Pleyup,, + Qa)upss = Flz), z€(0,1), (3.1)
for k =0,1,.... Note that P iz different for (1.3) and (1.4), while Q and F are
the same:

Pz} = 266(1 + Ou(z)) " ul(z) for (1.3),
Plz) = 2e0{1 + fug(z))  up(z) — 26271 for (1.4),
Q#) = 00 + Dusle) + rluala) ™,
Fa) = ef(1+ Oug(z))  u () + we(z) [rOup(z) + r - 1.
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The dependency of P, @ (and thus of L) and F on k is omitted in order to
simplify the notation. The problem (3.1) is subject to the boundary conditions
from (2.8):

Bu = (—/(0), u(1)) = (0,1). (3.2)
We shall discretize (3.1-2) on a non-uniform mesh I® with the points:
O=zp <y < "<z, =1,

Let
hi =z —ximy, ¢=1,2,...,n,

and let {w;} be a mesh function defined on I™. The upwind finite-difference
scheme to be used to discretize (3.1-2) is:

LMug i= —Dywo = 0, (3.3)

Lhwi = —eD"w; + P, D' w; +Quuw=F, i=1,2...,n—-1, (3.4)

M, = w, =1, (3.5)
where
Wiy — Wy Wy — Wyt
Diw; = , Dowy = ———7—,
hit1 hy

D.ow, ifP, <0
| + Wy T =Y,
Dw'“{p_wt- if P, >0,

2 Wiy Wy Wi — Wy
ani - ( i—1 K] + i+1 t) )
hi 4 hyyy hy hit1
Thus w; is the numerical approximation t0 x4 1{z;). Let v; denote the previously
obtained approximation to ug(z;) (when k == 0, v; = ugp(z;)). Then

B = 259(1 “+ HU,-)_lD_v,- for (1.3),

and analogous expressions hold for P; for (1.4), Q; and F,.

Lemma 3.1. The discrete problem (3.3-5) has a unique solution. Moreover, the
following stability inequality holds for any mesh function {y;}:

| LMy

el < | .
91 < 1Dyl + lyn + 1Sign-1 Qp

i=0,1,...,n. (3.6)
Proof: We wish to show that w; > 0 and Q; > 0 for all'{ and all k. We proceed
by induction. It is clear that v; > 0O, for k = 0, since we can take vy = ug = 1,
Consider the (k+1)-st iteration. Assume now that the solution of the k-th iteration
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v; satisfies v; > v, > 0 and that the corresponding Q; = Q:(v) > 0, whence L"

is inverse monotone. Choose « to be a positive constant, £ < 1, such that
e =Qik < F;=L*w,;, i=1,2,...,n—1

Now w; > & > O follows from L"{w; — &) > 0 and the inverse monotonicity
of L*. 1t also follows from the form of @y that Q; = Q;{w) > 0. By induction,
therefore, w; > 0 and Q; > O for all ¢ and all k. Fhus (3.3-5) represents a
non-singular linear system. Next let

w; = 1Dpyol(l — =) +lynl +  max [—L—h—%—[
N ' U i<i<n-1 @

Then

—Diwy 2 —Di(Ey), wn > Zyn,
Moy > B (y), i=1,2,...,n 1,

and this implics (3.6). 0

Let us now consider the discretization meshes. It is easy to check that
glz} = expl(1+ 0)(z — 1)/p] is a lower solution to both (1.3), (3.2) and (1.4),
(3.2). Since g(1) = v (1) = up(1) = 1, it follows that

w(1) < D) £ 91 = 7.

This indicates that P(z) behaves like const.u when =z is close to I, mcaning
that we are dealing with two-parameter problems. Such problems have been
considered in [11] in the case which corresponds o r = 1. Because of that the
linearizations of the quadratic problems (1.3) and (1.4) with » = 1 will be solved
numerically on a mesh similar to that from [11]. When r > 2, however, we are
dealing with a power layer near x == 1, and a mesh similar to that from [12}
should be used. Both kinds of meshes are generated by suitable functions and
are dense near = = 1. They can be expressed in the following way:

xi:)\(i.h), iﬂoaln"'an: hf:;) (37)
o'(r)t if t & [0,7],
M=) ) = 1 s (3=0)" 1] e (3.8)

Here ¢ is a parameter 1o be chosen from (0, 1/2], and 7 is the solution to

o' (Nr =), re(gl). (3.9}
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For such a r to exist, the following condition has to be satisfied:
@ (1) <1, ie. sup<1-—q.

This is always true if u is sufficiently small. If the condition is violated, however,
we may safely use an equidistant mesh. When r = 1 it is sufficient to use p = 1.
Then (3.9) reduces to a quadratic equation and 7 is easy to find:

7= (1+sp) g+ sp+ VVou(g + sp)(1 — g)]. {3.10}

For r = 1 there is no restriction on s, and we shall use s = 1. However, for
r > 2 we have to use:

1 r—1
> - 3.11
, P2 o=, (3.11)
where m and « are as in (2.11). Thus for r = 2,3 we can choose p = 1 and 1
can be expressed as in (3.10).

&2

1
m

Mesh generating functions of the type A have been used very often, cf.
f81, [10], [12] and the references therein. Numerical results will show that the
difference schemes (3.3-5) on these meshes are uniformly accurate for the lin-
earizations of problems (1.1), (1.3) and (1.4) respectively.

{2) The Linear Problem Arising from (1.1}

If we take the problem (2.7-8), the discretization (3.4) reduces to
DMwg = —eD"w; +rof tuy = (r =10}, {=1,2,...,n— 1,  (8.12)

where, as before, w; and v; correspond 10 ug4(2;) and wg(z;) respectively.
Note that this is & second-order central discretization, corresponding 1o (2.9). The
discrete problem (3.3), (3.12), (3.5) is considered on the mesh (3.7-9), {3.11),
Although numerical results are in practice quite satisfactory, there are some tech-
nical difficulties in proving this analytically. We shall illustrate the feasibility of
the method by considering the {ollowing discrete problem instead:

Lrw; = —eD"wi + rug (i) Twy = (r — Dupx:)",
i (8.13)
t= 12, . ..,n~ 1
The boundary conditions and the mesh remain the same. Note the use of w (%41)
instead of wg(x;), which is necessary for technical reasons. It is clear that (3.13)
18 a discretization of (2.9), where we retain the coefficients as known functions.
In practice, the coefficients are approximated by using {v;}, and the analysis of
the discretization (3.12) is much more complicated. When k == 0, we assume that
ug 15 the same as in {2.11).
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Theorem 3.1. The discrete problem (3.3), (3.13), (3.5) has a unique solution
{w;}, and on the mesh (3.7-9), (3.11)

[w,' — uk+1(x,-)| < Mh, = 0,1, NP T (3.14)
Here M denotes a constant which is independent of h and ¢.

Proof: The following stability inequality, analogous to (3.6), holds:

| Ly

| < T T
lvil < Dsyol + |yn] + 111 rup(Zig ) L

t=20,1,...,n.
From this we get

lwi — ufw:)| < {Dyulwo)| + , Jax | 2]

B alay e (S0 (19

where u stands for Ug+q and
R, = ﬂhu(:c,-) - (r — Dup(z:)".

Let M be a positive generic constant independent of A and =, We shall
prove that
| By

(2 1) 1

fori=1,2,...,n— 1. In a similar way, we can prove that

< Mh, (3.16)

D u(z0)] = |D-u(z0) - w'(0)) < Mh,

and this, (3.16) and (3.15) imply (3.14).

The properties of the special mesh will be used in the proof of (3.16). This is
a well-known technique from [8], [10], [12] and many other papers. Let ¢; = ih.
The proof will be divided into the following three steps:

1. t._'.*.l <7
2, tig1 > 7 and tir1 > g+ 3h.
3. 'r<t,-+1<q+3h.

in the first two cases the following estimate of R; will be used:
_ 1= @1 -
IRl < My e me— 7 (), (3.17)

where z is as in {2.11). First let us prove (3.17). Using (2.9) we get:

‘R;| < Mhye  max 1]u’"(m)] + ruz ) ug(ze) 7t — ue(z) Y.

Zi-1SeSmyy
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On differensiating (2.9), we obtain
ele”(2)] < Mu(e) 7w (2)] + |ug(2)]).
Then from
u(z) < up(z) < uo(e) < (1+ o2(r) € Mz{aipy), z < zi4q,

we conclude that

Bl < Mhiz(ziea)™™" max  {Ju'(=)] + |uj ()],

T 1 SES L4
Finally, 1o show that (3.17) holds, we require

1z

)] < M

7Y k=0,1,.... (3.18)
'This follows immediately for k = 0:

0 < wp(z) = 2'{z) - £'(0) < (=)
For k=1,2,..., (3.18) follows after integration of (2.9);

|u§c+1(:r,)[ < Ms“lf ug(s)"ds < Ma—lfo ug(s)"ds

4]
1_.
< MpM14+m-—Z

]—-a-—lh

Now recall that
ug(z) 2 yug(z) > vz(z).
From this and (3.17) we see that to prove (3.16) it suffices to show that

1= x"“]"o‘“l < Mh,

®

hiﬂwi{l +m

Turning to the special mesh, we conclude that the above inequality holds if we
prove

S=Mt-p it +m

1;’}5“—“-)_}““”1 < M. (8.19)
p <

In case 1 this follows from
A (t{—l) < M:
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and

1- /\(ti"{-l

14 m ) > 14 mw > M}LMP/(F+1),
e

on noting that by the choice of p in (3.11)

L

1> 1.
p+1(a+ )z

In case 2,

tii1—gq2 %(tiﬂ-l —q) 2 h,
and '
Nticr) € ©'(ticy) € Mu(tizr —q)727
Using this and A{t;11) = ©(f;4.1) with ms > 1, we get

§ < Mtirs — g7 P <

and (3.19) is proved in this case too.
We shall usc a different expression for R; in case 3:

|RBil <2 max  |u"(z)]+ rz(zie)-
+1

Fim1 RES T

Then using (2.9) we get
il < Ma(zip),

so that 1o prove (3.16) we must show that

#(zi11) = 2(M(tis1)) < Mh. (3.20)

But in case 3 we have

Ativ1) < Mg+ 3h) = (g -+ 3h),

and 1t follows that
2(xi) < MAP™ < Mh,

[rom which {3.20) is proved. Thus in all three cases (3.16) holds, and as indicated
carlier {3.14) follows. 0

This result justifies our method. Moreover, {rom (2.14) we sce that ug 18
a good approximation to u, when e is small. There is thus no need to seek a

numerical approximation, unless its error is smalier than O(u*). We consider
this case in the next theorem.
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Theorem 3.2. Let {w;} be the unique solution to the discrete problem

—e D" w; + ruk(m;)rnlwi = (r - 1)uk(x,-)r,

t=1,2,...,n—1, ~Dywy=0, w,=1,

on the mesh (3.7-9) with
sz

gl

y P2

1
E 3

and with

h < eap™, (3.21)

where e is a constant independent of h and &. Then
Iw,- - uk+1(a:,-)l <Mh i=0,1,...,n.

The proof will be omitted since its technique is the same as that of Theorem
3.1, However, some comments are due. When (3.21) is not satisfied, then ug is.a
O{h) approximation to .. But on the other hand, (3.21) implies that only cases
1 and 2 from the proof of Theorem 3.1 are possible. We can handle these cases
without the artificial shift from (3.13), provided p > 3/«. Since there is no shift,
we can even expect accuracy of second order. The first order discretization of the
left boundary condition, however, appears, in practice, to decrease that accuracy
to first order, particularly for large «.

4. Numerical Results

In this section we present numerical results for problems (1.3) and (1.4). In all
cases, the linearization is performed as indicated in section 2. The linearized
equations are then solved using upwinded differences, as given in the equations
(3.3-5). Our numerical experiments show that in practice it is not necessary to
take up very close to u,, as we did in the theoretical analysis when we chose
ug satisfying (2.11) for the problem (2.7-8). Thus the initial guess in all cases is
uo(z) = 1. The non-equidistant mesh described in section 3 was used except as
indicated below. The values chosen for the parameters of the mesh were p=1
g=05bforthecase r=1,s=1,and forr > 1, s = 1/m, where m is as in
(2.11). Finally the parameter r is determined from (3.10). In order lor 7 to exist
the condition s

<1

g -1~

b

given in section 3.1, must be satisfied. For large e, that is for values of & > 1/2
or e > 1/64, depending on r, this condition is violaied. In these cases a standard
cguidistant mesh was employed.
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Table 4.1
Number of Mesh Points n Average
e 8 16 32 64 128 | 256
1/2 116 | 1.08 | 1.04 ; 1.02 | 1.01 | 1.01 1.05
1/4 122§ 1.11 ) 1.06 | 1.03 | 1.01 | 1L.OY 1.07
/8 1314 1.17 | 1.08 | 1.04 | 1.02 | 1.01 1.11
1/16 144 1124 1 112 | 1.06 § 1.03 | 1.02 1.15
1/32 1.82 | 170 | 1.19 | 1.10 ¢ 1.05 | 1.03 1.31
1/64 1.64 7 199 § 2.00 { 2.00 | 2.00 ¢ 1.80 1.91
1/128 192 { 1.94 | 198 | 2.00 | 2.00 | 2.00 1.97
1/256 205 1 197 1 197 | 200 } 2.00 j 2.00 2.00
1/512 198 | 1.94 | 1.97 | 2.00 | 2.00 | 2.00 1.98

1/1024 1.86 | 180 { 2.00 | 2.00 | 2.00 | 2.00 1.96
1/2048 175 | 1.98 § 1.99 | 2.00 { 2.00 | 2.00 1.95
1/4096 170 1 2.04 | 2.00 | 2.00 | 2.00 { 2.00 1.96
1/8192 1.71 | 205 | 2.01 { 2.00 | 2.060 ; 2.00 1.96
1/16384 174 1 205 + 200 | 2,00 ; 2.00 ; 2.00 1.91
1/32768 176 1 205 1 201 | 2.00 | 2.00 { 2.00 1.97
1/65536 178 1 2.05 ) 201 | 2.00 | 2.00 ) 2.00 1.97
1/131672 179 1 2.05 { 201 | 2.00 | 2.00 ; 2.00 1.98
17262144 1.81 3 2.05 | 2.01 |} 2.00 ) 2.00 | 2.00 1.98
1/52428% 1.82 ¢ 2,05 | 201 { 2.00 ¢ 2.00 | 2.00 1.98
1/1048576 182 1205 ) 201§ 200 | 2.00 | 2.00 1.98
1/2097152 1.83 | 2.05 | 2.01 | 2.00 | 2.00 | 2.00 1.98
1/4194304 1.84 1 2.05 1 2.01 | 2.00 | 2.00 ; 2.00 1.98
1/8388608 1.84 | 2.05 { 2.01 | 2.00 | 2.00 { 2.00 1.98
I67T77216 § 1.84 { 2.05 | 2.01 | 2.00 ; 2.00 | 2.00 1.5%
re 1.66 | 1.08 1 1.04 | 1.02 | 1.01 | 1.01

Uniform Rate p} : 1,14

Double Mesh Rates of Convergence for Problem (1.3) with r = 1,0 = 1

The uniform rate of convergence was determined using a variation of the

double mesh method described in [4]. This involves calculating the double mesh
error

en, = max |ul — i

2n.|
6<i<n ’

which is the difference between the values of the solution on a mesh of n points
and the interpolated vatue for the solution at the same point on a mesh of 2n
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points. The uniform rate of convergence is then given by

pg = average,, pi

where
o = (Ine} ~ Inei*}/1n(2)
and

L — n
€1 = Max €y, .

Some cautions on the interpretation of uniform rates of convergence derived in
this way are also given in [4].

Table 4.1 gives in tabular form the values of the local rates of convergence,
for a range of n and ¢, for the problem (1.3) with r == 1 and § = 1. These are
given by

'PZ; = (ln erdls = In eczi:)/ln(z)

The rightmost column contains the average rate of convergence for the row, that
is for a fixed value of &, given by average,p]j,. The bottom row contains the
values of p%. This indicates a uniform rate of convergence pg = 1.14, although it
should be noted that examination of the p% indicates that this is unduly influenced
by the rate for n == 8 and a better estimate would be 1.01.

Although the derivation of the difference schemes (3.3-3) in section 3 em-
ployed an upwinded difference scheme, we remark that uniform convergence can
be achieved with a scheme which uses centered difference approximations to the
first derivatives throughout. This is what is presented in Table 4.1. We emphasize
that we use the centered difference approximation instead of D’ in (3.4), as well
as u! {2;) appearing in P and F. We still usc the directed difference approxima-
tion —Dywo = 0, however, for the boundary condition at z = 0. This appears
to degrade the performance of the centered difference scheme to first order when
¢ is of order 1. For small &, however, the convergence is classically O(h?). Tt
should be remarked that for problem (1.4) this effect does not occur. This may
perhaps be explained by considering that for problem (1.3), with smail ¢, and for
problem (1.4) the solution is almost constant near = = 0, and hence the upwind
approximation Dy wq attains second order accuracy.

Tables 4.2 and 4.3 give the uniform rates of convergence, calculated using
the double mesh method, for problems (1.3) and (1.4) respectively.
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Table 4.2

é Scheme r

1 2 3
0.0 | Upwinding 1.20 | 1.25 § 1.59
Centered 1.20 1 1.25 7 1.59
0.5 | Upwinding .11 | 1.21 | 1.55
Centered 1.16 | 1.24 | 1.57
1.0 | Upwinding 99 | 1.08 | 1.52
Centered 1.14 | 123 | 1.56
2.0 | Upwinding .85 92 | 1.37
Centered 1.10 { 1.22 | 1.54
3.0 | Upwinding a7 87 1 1.29
Centered 1.07 1 1.21 | 1.52

Uniform Rates of Convergence for Problem (1.3)

Table 4.3

6 | Scheme o F

1 2 3
0.0 | Upwinding 114 | 118 | 1.52
Centered 194 | 2,10 | 1.69
0.5 | Upwinding L4 1 1.00 ) 1.38
Centered 166 | 2.08 | 1.67
1.0 | Upwinding .64 g4 ) 1.20
Centered 198 | 2.08 | 1.66
2.0 | Upwinding .67 67 | LOO
Centered 1.99 | 204 | 1.65
3.0 | Upwinding b4 61 89
Centered 2001 1.96 | 1.64

Uniform Rates of Convergence for Problem (1.4)

Tt 13 clear that both schemes are uniformly convergent for both problems. Further,
it should be noted that the centered difference approximation shows second-order
convergence for problem (1.4), in contrast to the case for problem (1.3).

1o compare our results with those given in [13], we calculate the Effective-
ness Factor. This represents the actual reaction rate divided by the rate which
would occur if the inira-particle reactant concentration were everywhere identical
to that at the pellet surface. The effectiveness factor, for an r-th order reaction
with volume change in a spherical catalyst pellet such as that treated by equation
(1.4) is given by

_ Beldu/dzx)|,—
N 1+6
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Itis clear that this value can be calculated from the numerical sobution of problem
(1.4). The most direct way would be 1o estimate the derivative (du/dz)l,—1 by
the directed difference D). w,, at the boundary point £, = 1. This is presumably
a similar procedure to thai used in [13], although no details are given there, Table

4.4 gives the effectiveness factors calculated on a mesh of 256 points using this
method.

Table 4.4
¢ £
4 | 1 T71P 1536 [ 17100
r = 0

1O | 9979 | 9974 | 9946 | 9870 | 9308
2.0 | 9977 | 9967 | 9892 | 9594 | .7666
3.0 | 9976 | .9961 | 9837 | 9083 | .6608
r = 1
LO | .9663 | .8885 | .5627 | 3342 | 2135
20 | 9518 | 8488 | 5000 | .2903 { .1841
3.0 | 9382 | .8153 | 4565 | .2613 | .1649
r = 2
0.0 | 9664 | 8891 | 5667 | .3397 | 2180
1.0 | 9385 | 8165 { 4599 | 2643 | .1679
2.0 | 9137 | 7626 | 4007 | 2251 | .1420
3.0 | 8913 | 7201 | 3610 | .1998 | .1254

Effectiveness Factors for (1.4) using Differences

With the exception of the case r = 0 our results are in agreement with those in
L13] to within 0.3%. To examine this discrepancy further, one should note that
the case 7 = 0 has an exponential layer as opposed to a power layer for r > 1.
Thus it might be expected that a classical shooting based method such as that
used in [13] might fare badly. As remarked in section 1, equation (1.4) can be
rewritien in the form (1.5), and in the case of r = 0 becomes

2u’ ] 9
E(H-au) =0

This may be solved exactly for u'(1) and gives u'(1) = (1 + 68)/3. Thus the
effcctiveness factor 9 = 1, independently of € and 8. Our results are significantly
closer 10 this than the results in [13]. Tt is clear that the inaccuracies in our case
arc a result of using a difference approximation to the derivative at a boundary
with an exponential jayer. To avoid this we may make use of equation {1.5) to
rewrite the derivative as an integral from 0 10 1 and then employ quadrature:
% |

1
2
— = --/ zu’ (z)dx.
o IHbuj e

x‘Z !

14 fu o

0



212 R. Vulanovié, PA. Farrell, P. Lin

Using the facts that «'(0) = 0 and u(1) = 1 we get the following expression for
the effectiveness factor:

1
n = 3] zgur(:c)d:c.
o \

Table 4.5 gives the effectiveness factor calculated using this formula with the
integrals being evaluated wsing the trapezoidal rule. In this case the result is
exact for the case with r == 0,

Table 4.5

£
4 | 1 1 18 186 [ 1/I00
r = 0
1.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
2.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
3.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
r = 1
1.0 | 9685 | .8914 | 5664 | 3366 | .2151
20 9543 | 8523 | 5046 | 2933 | .1861
3.0 | 9409 | 8193 | 4617 | 2645 | .1671
r = 2
0.0 | 9685 | 8915 | 5703 | 3434 | 2213
1.0 | 9409 | .8196 | 4652 | 2606 | .1714
20 | 9162 | 7662 | 4069 | 2312 | .1460
30 | 8940 | 7241 | 3678 | 2063 | .1296

Effectiveness Factors for (1.4) using Quadrature

Thus to summarize, the method described in this paper is in practice uniformly
convergent for both problem (1.3) and problem (1.4). The paper also introduces
a more accurate method for calculating the effectiveness factor numerically.
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