Camputers Elect. Engng Vol. 19, No. 3, pp. 231-244, 1993 0045-7906/93  $6.00 + 6.00
Printed in Great Britain, Al rights reserved Copyright © 1993 Pergamon Press Ltd

LIMITING DISTRIBUTION OF THE BLOCKING
PROBABILITY FOR CIRCUIT-SWITCHED NETWORKS

HassAN PEYRAVI, KaziM KHAN and PAUL A, FARRELL
Department of Mathematics and Computer Science, Kent State University, Kent, OF 44242, U S.A.

(Received 10 October 1991; aceepted in final vevised Jorm 3 February 1992)

Abstract—The end-io-end biocking probability has been used as a performance criterion to quantify
network reliability, Yum and Schwartz have shown that different types of routing schemes for
circuit~switched traffic in a nonhierarchical network, with uniform traffic intensity, lead to different
performance trade-offs. It is alse assumed #hat the network is syrnmetric and the redirected traffic on the
links is Poisson. It is, however, not ciear how the trade-offs would be effected by using different traffic
intensities on the links, i.e. if the nodes penerate cails with different rates. This paper analyzes the traffic
behavior without assuming that the redirected traffic is necessarily Poilsson or that the network is
symimetric. We examine & statistical mode! to obtain the exact limiting distribution and the end-to-end
blocking probability of a single specified link, a group of links and the entire network for relatively small
networks,
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I, INTRODUCTION

Alternate routing schemes have been widely used in hierarchical and nonhierarchical circuit-
switched networks [1-3]. The main performance criterion used for the circuit-switched application
of a network is the end-fo-end blocking probability. To improve the performance, different routing
algorithms from fixed control (nonalternate) to dynamic control {alternate) have been proposed,
For nonhierarchical networks, it was shown by Yum and Schwartz {2] that there is a cuz-off point
for the traffic intensity (p), below which alternative routing gives lower blocking probability than
direct routing for a given source-destination pair in a symmetric network [2]. Their analysis is based
on the assumption that calls are generated with the same arrival rate (A) and the same traffic
intensity for each link. The call arrival process was assumed to be Poisson and the call holding
time to be exponentially distributed, with the same parameters. Krupp [3] developed & mathemati-
cal model for symmetric and uniformly loaded networks with an alternaie routing scheme. In his
model, the blocking probability was considered as a function of the external traffic load and a
bistable blocking behavior was observed during overloads. Later, Akinpelu [1] extended the
analysis to nonsymmetric networks and similar instability results were cbserved. Yum and
Schwartz [2] compared different types of routing procedures for fully-connected networks, Their
results showed that aiternate routing performs betier than nonalternate (or direct) routing, if the
network traffic is light. For heavy traffic, direct routing performs better as far as the end-to-end
blocking probability of a particular link is concerned,

Three parameters determine the performance of a particular routing algorithm. The run-time of
the algorithm in which the appropriate patlh is computed and established. The probability that the
algorithm fails to establish a connection due to the network congestion, network failure, etc.
Finally, the amount of randomness used by the algorithm, Peleg and Upfa [4] studied the trade-off
between these parameters for the problem of routing on a bounded degree network. In this paper,
we present an analytical model to compute the exact limiting distribution for direct and alternate
routing schemes, under various traffic Joad conditions, for both symmetric and asymmetric, fully
and nonfully connected networks. This technique is different from the technique discussed in Ref.
[2]. The network does not have to be symmetric and/or fully connected. The method works for
any arbitrary network., We shall show that for a nonsymmetric network there exists a cur-off
surface, analogous to the cut-off point in Ref. {21, for the blocking probability of a single link. Below
this cut-off surface, alternate routing has lower blocking probability, whereas above it direct
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routing has lower blocking probability. A few natural questions arise when investigating direct and
alternate routing for general networks:

» Do such trade-offs always exist?

» How sensitive is this surface, when the traffic intensity is not the same for all nodes, i.e.
nonuniform traffic is generated by different nodes?

» One would suspect the cut-off surface, when it exists, {o be a more complicated function of
traffic intensities, especially when the network is not fully connected or is asymmetric. Also,
one might suspect that, for different topologies, one could observe trade-off results which are
different from those described in [2].

# What is the blocking probability and the cut-off surface for one specific link, and more
generally, what is the behavior of the joint blocking probabiiity of a group of links or the entire
network?

e What does the cut-off surface lock like when the links have different capacities?

Section 2 presents an overview of nonhierarchical networks and their control mechanisms, The
analytical model and statistical assumptions are discussed in Section 3, Comparisons of direct and
indirect routing schemes and their performance for a specific example network are given in Section
4, Conclusions and remarks are covered in Section 5.

2. NONHIERARCHICAL NETWORKS

In most operational networks, the network rouiing algorithm selects one route, from a set of
possible routes, in setting up the network connections. The routing algorithms should meet certain
criteria such as efficient use of resources, less blocking probability and minimum cost. The question
of interest, in the routing context, is how the routes used affect the overall performance of the
network. Certain tools have been developed to calculate the minirmum-cost route for any
source~destination pair {5).

A network consists of a set of nodes, N ={n;,n,,...,n} and a set of links L = {/;1 <4,
J <k, i<j} Link /; connecting node 7 to node j carries ¢; number of channels. Path J is
defined to be a path between nodes n; and n; via nodes n, n,....n,_,;. Without loss of
generality, we assume undirected graphs in this work. If the network is fully connected then there
would be k(k — 1)/2 links in its graph. Otherwise, some of the links may be missing. Figure |
illustrates a four-node fully-connected graph.

A route R is an alternating sequence of nodes and links, beginning and ending with nodes, In
a typical and relatively small network, N and L might be measured in tens and the set R could
be much larger. Major related issues such as network topology, network connectivity, node and
link capacities determine the routing policy. A route can be computed before the call is established,
as in source routing [6] and the minimum spanning tree [7] algorithms, or it can be computed, in
a highiy distributed fashion, during the call establishment process on a node-by-node basis. In
ecither case, adaptice capability and alternate routing can be added to the controller algorithms.
In alternate (indirect) routing, a series of links and paths might be tried before the connection is
established. In nonalternate routing, the node at which the request is generated, the source node,
uses a fixed path which has already been determined by the shortest path algorithm or any other
minimum cost procedure. Studies have shown that alternate routing algorithms reduce the blocking
probability [2,8}. There is a trade-off for this apparent gain. Longer routes use more system

£93
Fig. 1. The configuration of a four-node fully-connected Fig. 2. A configuration of a fully-connected three-node
network. network.
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(a)

Fig. 3. A configuration of a four-node network.

resources. If there are too many requests, the congestion due to alternately routed traffic may
detract unduly from the bandwidth available for the direct route [9].

3. NETWORK MODEL AND STATISTICAL ASSUMPTIONS

Consider the three-node network of Fig. 2. For each source-destination pair, there is a primary
path and a secondary (alternate) path in the network. For an arbitrary network, we may have a
nonuniform number of paths between any given pair of nodes. These paths are not necessarily
disjoint. There are six direct and alternate paths in this network; ppy, Pisy Poss Pross P and pyq,
where for example p;, is a path directly connecting node 1 and 2 via link /,, and p,,, is a path
indirectly connecting node 1 and 2 via links /;; and I,,.

A call is a basic unit of circuit traffic. Fach call is originated from a source node i and it is
connected to a destination node j. The call arrival process at each node is assumed to be Poisson
with rate 4, and the call holding time is exponentiaily distributed with mean 1/u for an Erlang rate
of p; = A,/u. The call arrival distributions for different nodes are not necessarily uniform. The call
setup and disconnection times are very short compared to the call holding time and they are
assumed to be zero in this paper.

First, we study the same network as in Ref. [2] but with a different approach. This approach
is based on the limiting joint distribution of the underlying Markov process. We compare the direct
and alternate routing in terms of blocking probability for different types of traffic. The main
assumption here is that the call arrival distributions are independent Poisson processes and the call
‘holding times are exponential.

For large number of nodes, the problem may become intractable, when each link has many
channels. Even for a small network, the number of possible states could be extremely large,
depending on the topology of the network. We developed a set of algorithms to compute the set
of all possible valid states a network could attain, the state transitions and the balance equations.
Then we used a linear system solver, such as those in the LINPACK routines, to solve these
equations, for the probabilities of the various states. Using these probabilities, we can then compute
the limiting blocking probability over a specified group of nodes under different traffic patterns for
both direct and alternate routing.

The first step to derive the Markov process is to compute the set of valid states. In this paper
we shall restrict ourselves to the case where each link has only one channel and hence can carry
at most one call ai a time. This reduces the complexity of the analysis. Computational results
indicate that qualitatively similar results hold for a larger number of channels per link. There are
64 possible states for the network of Fig, 2 and only 14 of them are valid. The network cannot
attain the other states due to limited available bandwidth on some links. For example, the state
in which a direct call is connected via p,, and an indirect call is connected via Dy 18 not a valid
state. If we increase the number of channels on each link to 2, then we would have 3° = 729 states
and only 85 of them are valid. The four-node fully-connected network of Fig. | consists of 30 paths.
There are 2* possible states and only 534 of them are valid.

For the four-node network of Fig. 3a, there are 14 paths between nodes and 24 states, cnly 42
of them valid. For the network of Fig, 3b, there are 20 paths, and 144 valid states out of 2% possible
states. The network of Fig. 4 is a more realistic network. It consists of 36 paths and 2% states. Only
306 of them are valid states.




234 HASSAN PEYRAVI ef al.

{12
1]
C:/CD (m)
T
s £34 4 345

Fig. 4. A configuration of a five-node network.

We developed a parallel algorithm to compute the set of all possible valid states of a network.
A bit pattern of size m is assumed for the state representations of the network, where m is the
number of different paths in the network. Let  be an array representing the number of occupied
channels on different paths and let 0, be a path which utilizes link(s) /; for some { and j, 1 <1,
j <k and i <j. The following conditions can be checked, in paralicl, to determine the validity of
a particular state. These conditions determine whether a state can be embedded in the network or
not:

1. For every link [, 0 < flow(ly) < ¢y
2. B fAow(Q) < c¢; where O, is a path utilizing link(s) /;, 1 <i, j < k and [ <, and [ is the
number of such paths.

The next step is to compute the state transitions. State transitions were computed by applying
events such as call arrival (Add) and departure (Del) to each state of the network. Table 1 shows

Table 1. State transitions

State Current Next
No. state Events Paih state

1 000000 Add P 100000
Add P 010000

Add P 001000

2 100000 Add iz 100100
Add Fiz 116000

Add bn 101000

Del Pr 000600

3 410086 Add P 1100600
Add P 010016

Add P 11600

Del Pis 800000

4 001000 Add Pir 101060
Add P 013008

Add Pin 00100

Del P 000004

5 160300 Del P 000100
Del P 100000

[ 110000 Agd Py 111000
Del Pz 001000

Del I 100000

7 101000 Add 120 111000
Del Pz 001600

Del Py 100000

2 010010 Del P £00010
: Del P 010000

9 011006 Add Pia 111000
Del P 00000

Del P 010000

16 001001 Del P 060001
Del Pz 401000

1 003100 Add Pz 100100
Del Pis2 600600

12 111600 Del P 411060
Del P 101060
Del Pu 110066

13 400018 Add Py 010016
Del P 000000

4 000001 Add Pn 061001

Del Py 060000
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the state and state transitions for the network of Fig. 2. The state vector corresponds to paths p,,
Pis, Prss Pisas Py 80d piyy. For example, state 1 corresponds to the network when it is idle. State
8 represents the network when two calls are in progress; a direct call on p,, and an indirect call

on p;.
Having the states and their transitions, one can generate the corresponding balance equations.

The balance equations for the above state transitions are:

(2 A+ 43)8) = 1Sy + 13 Sy + pas Sy + py Sy + B S + i Shas
(Aia+ Ais 4 Ay + 112)85 = 408, + tip Ss + 113 S5 + 03 54,
(P2 + Ay Ay 03085 = A3 8) + 112 S+ thy3 Sg + a3 Sy,
(Lo + A+ Ayy 4+ 05)S5 = A5 Sy + 111, S5 + 24385 + 43 Sho»

(f12 + B2 )Ss = 41385 + A 841,

(Aas -+ pys + B2 1Ss = A135; + A1, S5 + 53 S)a,

(Ais+ s+ i)y = A S + 25085 + 13S0,
(i3 + g3 3Sp = 4,3 85 + 4,351,

(Aip+ s+ p03)Sg = Aaa Sy + 2038 + p12. 82,
(Mo + U3 )80 = A5y Sy 433 S0,
(A + 2)S)y = 1 S,

(g + s+ 1) S = A0 S+ A S5 + 4,55,

(A3 + p )81 = iy S,

(23 + B23)Si = Un Sie.

Where 4, is the arrival rate between node i and node j for the Poisson process, 14 is the departure
rate for the same link and P, is the probability that the network is at state i. The call holding times
are assumed to be exponentially distributed with the same parameter y. Hence Hy = u, for all f, j,
i #J. By dividing both sides of the equations by yu, we have:

(Pt patpu)Si=8+5+8,+S+5:+ Su,
(Pt pn+pn+ DS =ppS + 85+ 5,+ 8.,
P12+ P+ o+ DS = 0138, + S5+ S + S5,
(Piz+ pis+ p23+ DS = 53 8, + S + S5+ Sy,

285 =puSi+ 0S8,
(P2 + 28 = pn S+ PS5 + S,
(s + 28, =pu S+ pu S+ S,
28y =pu S+ oS,
(P12 + 28 = pu S+ p13 Sy + Sz,
280 = Py S+ P Sus
(pra+ DS, =55,
38 = py S+ P1a Sy + P S,
P+ 1)S; =S5,
(P + 11514 = S,

4
Z Si= I:
P=1
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where p; = A,/n. Using MACSYMA or LINPACK software packages the system can be solved
for the S5, | <7 < 14, The above technique can be used to compuie the end-to-end blocking
probability between two nodes, a set of nodes or the entire network, as a function of traffic
intensities p, on different links [9]. We solved the above system symbolically using MACSYMA
for small networks such as the networks of Figs 2 and 3. For large network the system can be solved
numerically using LINPACK software. The results are discussed in Section 3.

The main assumptions for the traffic is that the arrivals at each node and in each direction are
independent Poisson processes and the call holding times (service times) are independent and
identically exponentially distributed with parameter p. These are standard assumptions in
telephone traffic modeling. We will assume that the redirected traffic takes negligible amount of
time to find an alternate connection, or to declare the call is lost due to lack of availability of an
end-to-end connection.

3.1. Direct routing scheme

We assume that we have independent arrivals for the use of link {; where i,/ =1,2,. ..,k and
[ < j. At any time ¢, if a call arrives (either at node »,, or #; to use the link /,) then the request
wiil be granted if there is a free channel on the link. If there is no free channel, the call is declared
lost. Thus the nodes in this approach perform no redirection of the traffic. If the call is granted
a channel, it holds the channel for a random duration which is exponentially distributed with
paramater u. We assume that the arrival rate for the Poisson process to use the link /;is 4. Clearly,
the limiting distribution of the number of busy channels on each link must exist. Let Py{c) denote
the probaiblity that in the limit the link /; has ¢ channels busy. Thus, P;(c;) is the probability that
the Hink is full. Since the arrival processes are mutually independent, the joint limiting distribution
is the product of the marginal limiting distributions of each link. Therefore, by the usual Erlang
formula, the limiting probability, that the link /; has ¢, channels busy, is:

k L

7y
H " - ?
fj=1 /
i< C{Jj(fz plj/ﬂ)
)

where ¢;€{0,1,...,n} and p,;=24,/u. We will compare this distribution with the limiting
distribution of the alternate routing scheme.

3.2, Alternate routing scheme

In this scheme, the indepndence of the link status is no longer valid due to the alternately routed
traffic. The situation can be easily explained by considering the three-node network. Further, we
can simplify the model by assuming ¢; =1, for 1 <, j <k, i <j. The state space of the system can
be represented by the corners of a unit cube. Here the x-axis is the state of the link /,, the y-axis
is the state of link eli,, and the z-axis is the state of link /;. These states are numbered as depicted
in Fig. 5.

The corners represent the original eight states and the circles represent extra states representing
the redirected traffic. This is a Markov process [10] as described in Ref. [9]. The comparison of
these schemes is presented in the next section.

4. COMPARISON OF ROUTING SCHEMES

To avoid triviality, we assume that the network has no isolated node. The node, in which the
call is originated, is called the source node and the node, which the cell is connected to, is cailed
the destination node. If the direct link connecting the source node to the destination is available
then the source node will try to send the information through the direct link. However, if the direct
link is not available (either due to congestion or failure) then the source node may or may not reject
the request depending upon its routing scheme. In direct routing, the local routing algorithm rejects
any call once the direct route is not available. In alternate routing, in the absence of direct link
availability, the local routing algorithm tries to find the next available path, leading to the
destination, satisfying some performance criterion such as minimuom cost, least congested path,
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Fig. 5. Hlustration of states and their numbering.

least blocking probability, least signalling time, etc. By having this option, the system may utilize
available resources better with less overall blocking probability,. However, the trade-off of this
apparent gain is that the longer the alternate route, the more system resources it will use, and hence,
if there are too many requests, the alternate traffic may occupy sufficient bandwidth to detract
significantly from the direct traffic opportunities. The direct routing scheme can be analyzed
without difficuity and the results are well known [9]. In the following, we provide a method to
compute the trade-off using the alternate routing scheme and then compare the results with direct
routing.

This model provides a mechanism to compute the end-to-end blocking probability for a given
source—destination pair, a set of source—destination pairs and the whole network. We study the
performance of the routing schemes for networks with small numbers of channels per link. One
of the encouraging observations is that the performance pattern of the two schemes did not change
when more channels were added to each link. This gives analytic evidence that one could study
a small prototype network of the same topology, rather than the actual network, having a large
number of channels per link. The prototype network would have a smaller number of channels
per link, and hence a smaller number of balance equations. This approach is fairly general and
the algorithms developed here can, in principle, be used for any network.

For the sake of clarity of exposition, we present the analysis for a three-node network. Therefore,
most of the discussion will be restricted to this network. The Kolmogorov equations of this network
were given carlier. However, we should emphasize that the method is general and can be applied
to larger networks.

The system of equations can be solved by hand with some effort and the solution was presented
in Ref. [9]. In this paper, we look at the case where the links have two channels. Now it can be
shown that there are 85 different states. It is not easy to solve these equations by hand especially
when the traffic rates p,y, p;; and p,, are different. We solved the system symbolically using the
MACSYMA symbolic algebra program developed at MIT, for the case Pr2 = P13 = P = p. Using
alternate routing, the following blocking probability for link /,, is obtained for the case where each
link has only one channel:

p4+7p3+9p2
o5+ 8p  +15p2+8p +2°

P, traffic is blocked) ==

It is trivial to get the corresponding probability for the direct routing scheme:

Py (), traffic is blocked) = ——p;

1+
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Fig. 6. Cut-off surface for the three-node network with one  Fig. 7. Contour plot of cut-off surface for the three-node
channel per link. network with one channel! per link.

The inequality P, < Py, is equivalent to solving p?+ p — 2 <0 which implies that the alternate
routing scheme performs better than the direct routing scheme if and only if p < 1. In fact, we can
find the cut-off surface in the more general case when the input traffic rates are different as well.
In this case we obtain the surface given in Fig. 6.

The values of gy, py and py;. which He below the surface are the ones for which the alter-
nate routing scheme performs better (i.e. has smaller blocking probability) than the direct
routing scheme and the sitvation is reversed above the surface. For purposes of comparison
with the more complicated case considered later, the contour plot of this surface is depicted in
Fig. 7.

Similarly, if we consider the probability that both links [, and /;; traffic is blocked, then for the
equal traffic rates, we get

p4+6p3—i—6p2

P (1 and [;; are blocked) = T8 115,78 13

It is again trivial to get the corresponding probability for the direct routing scheme:

2
Py {l; and {; are blocked) = <-~—£~»~—~> .
i+p
For this case we can casily show that for all values of p we have Py, < P,,. This should not be
surprising since we intuitively suspect that the alternate routing scheme will use up the empty links
quickly by allowing indirect traffic to utilize them and hence will provide poorer availability for
direct traffic on the two links /; and [;. This is illustrated in Fig. 8. In fact, our numerical results
show that this observation remains true even when the traffic input rates are different. The behavior
is, however, qualitatively different as illustrated in Fig. 9.
If we consider the situation that no call is getting through (i.e. each lnk in the network is
biocked), then for equal arrival rates, we have:

ot 5o+ 3pt
ot 8p 1507 4+ 8p 427

P,.(all traffic is blocked) =

1t is trivial to obtain the corresponding probability for the direct routing scheme:

3
Py {all traffic is blocked) = (ﬁ———) .

P
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Fig. 8. Blocking probability for 4, and /,.

Again we have Py, < P, for all values of p as one would suspect. We have also shown numerically
that this phenomenon remains true even for the case when input traffic rates are not necessarily

equal.
For the event that some traffic is being blocked somewhere in the network we have the

robability:
P d pt+8p°+12p7

P+ 8pi L 15p +8p +27

P, (some traffic is blocked) =

One can easily compute the corresponding probability for the direct routing scheme:

I

3
Py (some traffic is blocked) =1~ (w) .
P+p

One would suspect that, in this case, the alternate routing scheme should outperform the direct
routing scheme. This is indeed the case as one can easily verify that Py, < Py, for all values of p.
The result is illustrated in Fig. 10. In fact, numerical results show that this remains true for different

input traffic rates p;;, p,; and p,, as shown in Fig, 11,

Pig = Pp = 0.2 Pig = Ppy = 4.0
1.0 1.0 -
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Fig. 9. Blocking probability for I, and /,;.
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Now we examine the three-node network, where each link has two channels. As stated earlier,
there are 85 different states. We again get simple closed form formulae for the above probabilities
ini the case of egual input traffic rates. We lst these probabilities in Appendix A.

For the case, when the traffic arrival rates are different, we can calculate the cut-off surface and
contour plot shown in Figs 12 and 13, respectively.

These figures show that the direct routing scheme does not perform as well as the alternate
routing scheme for all those arrival rates which lie below the surface and the converse holds above
the surface (as far as blocking is concerned for a particular link}.

One should note that all the conclusions drawn from the network having one channel per link
remain valid for the network having two channels per link. The differences are only in terms of
magnitude. In fact, as can be seen from the contour plots for the two cases, they are almost visually
indistinguishable. Results, similar to the one channel per link case, are obtained for the blocking
probability of /;, and /;, and of some link being blocked. Therefore, we do not present the results
for the larger network in detail. This is a useful observation which gives some credence to assuming
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Fig. 11, Blocking probability for some link.
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Fig. 12, Cut-off surface for the three-node network, with  Fig. 13. Contour plot of cut-off surface for the three-node
two channels per link. network with two channels per link.

that when a network has a large number of channels per link, we could reduce this number, for
analysis purposes and the conclusions could be validly projected back to the original network,

The second observation is that the findings for a network with small number of channels per
link should also be visible in the same topology with a larger number of channels, This is due to
the fact that as soom as the extra channels are occupied, the two networks behave identically for
a short time period. It could be argued that the larger network may have more complicated
performance attributes which may not be achievable for the same network with smaller channel
capacities. We leave the exhaustive analysis of this topic for further research.

In addition, it appears that, under certain assumptions, larger ring networks behave in a very
similar manner to that of the three-node networks considered above. Justification of this conjecture
is provided by consideration of the four-node ring network of Fig. 3a, with one channel per link.
We remark that, in this case, we must make additional hypotheses in order to guarantee that a
comparison between direct and alternate routing is reasonable. In particular, since, unlike the
three-node cases considered, this network is not fully connected, we must not permit traffic between
nodes 1 and 3 or between 2 and 4, that is we must assume that P13 = pos = 0. Otherwise, we permit
traffic which cannot possibly be routed under the direct algorithm. This will lead to anomalous
results in any comparison of the two methods. If we make this hypothesis, we can show that the
network of Fig. 3a behaves in a similar manner to the three-node networks considered earlier.
Again the differences in blocking probabilities are only quantitative, For the purpose of illustration
we considered the two cases, where the traffic on two adjacent sides (/4 and 1y,) were equal, and
the case where traffic on two opposite sides (/;, and l;) were equal. For the former case a contour
plot of the cut-off surface for the blocking probability of /, is shown in Fig. 14. The surface for
the latter case is visually indistinguishable. Also, as in the three-node case, direct roufing proves
better for the blocking probability of /, and 1, for all loads, whereas alternate routing is always
better, if we consider the probability of some link being blocked.

5. CONCLUSIONS

In this paper, we have introduced a new technique to compute the exact end-to-end blocking
probability of small nonhierarchical circuit switched networks such as those which arise in private
networks. We have analyzed the traffic behavior without assuming that the redirected traffic is
necessarily Poisson or the network symmetric. In conclusion, we surmise that:

e The exact limiting distribution (for the alternate routing scheme) of the underlying Markov
process for networks with sparse connectivity can be obtained, provided one has sufficient
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Fig. 14. Contour plot of cut-off surface for the four-node network with one channel per link.

computing facilities. For a few nodes and links this may be obtained in closed form. However
for larger networks due to the complexity of the closed form solutions numerical techniques
shouid be used.

The cut-off surface between the two schemes may not always exist if one wants to study the
blocking probability behavior over a group of links. For instance, for the networks studied
in this paper, the direct routing scheme performs better (has lower blocking probability) than
the alternate routing scheme when we are interested in the traffic of both links /[, and [,
simultaneously. The same conclusion holds when we want to see the traffic flow over all links.
Only when we restrict our attention to one link does there exist a cut-off surface.

When such a trade-off surface exists, it is a funciion of the traffic intensities on different links.
FFor the examples presented here, this surface does not seem to be a very complicated function.
Under certain reasonable hypotheses, the alternate routing scheme always performs better (has
lower blocking probability) than the direct routing scheme, when we are interested in
minimizing the blocking probability of any link, that is, when we consider the probability that
some (arbitrary) link is blocked.

The channel capacity of links does not seem to play a major role in the analysis of network
performance as far as the blocking probabilities are concerned (at least for the networks we
studied). It seems as if one can retain the topology of the network, reduce the channet capacity
and study the smaller network with littie loss in generality.

There seems evidence to suggest that for ring networks, under the assumptions given, the
number of nodes and links does not have a qualitative effect on the relative behavior of the
blocking probabilities of direct and aliernate routing.
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APPENDIX

Closed Form Solutions for Three-node Network with Two Channels Per Link

We give below the closed form solutions for some blocking probabilities, for the three-node network, where each link
has two channels:

P (I, is blocked) = (4374p> + 196,101 % + 3,888,648 ™ + 45,788,490 + 361,018,998 7
+2,031,625,506p " + §,475,935,664p 9 + 26,845,417,248p % + 65,514,779,952 1%
+124,249,225,840p 7 + 183,692,060,688p " + 211,174,905, 184 10
+ 187.013,165,248p° + 125,196,776,576p" + 61,277,812,992p"

+20,671,133,184p° + 4,286,569,640p° + 410,572,8000%)/denom,

where
denom = 4374p™ + 204,849p™ + 4,272,102 " + 53,331,048 "% + 450,282,204 17 4 2,748,261,126p ¢
+12,640,038,840p ¥ -+ 45,070,169,844p 1 -+ 127,214,108,984, 1 - 288,890,718,880p 12
+ 534,772,537,264p " + 815,500,339,936p '° + 1,032,697,868,416p° + 1,091,325,434,240,%
+963,194,629,504p " + 706,529,780,224p° + 425,317,519,872p% + 205,296,832,512p 1*
+ 76,459,769,856p * + 20,610,588,672p2 + 3,573,227,520p + 298,598,400,
and
. pt
Py (h; 15 blocked) = E:mzm
Pyl and |5 are blocked) = (4374p™ + 187,353p% 4 3,557,682p % + 40,196,736p %
+304,618,050p " + 1,645,974,458p % 4 6,634,270,536p 5
+ 20,276,793,780p ** + 47,812,703,936p 7% - §7,720,931,600, 1
+ 125,594,399,840p " + 139,939,871,6480 % + 120,165,926,656,°
+ 78,003,245,440p°% + 37,001,445,120p7 -+ 12,084,585,984p°
+2,422,794,240p° + 223,948,800 %) denorm,
and

e 2
Pyl and {5 are blocked) m( e 3) .

P (all links are blocked) = (4374p% + 178,605 + 3,226,716 + 34,604,982p % + 748,217,102p "
+ 1,268,323,4100 ™ + 4,792,605,408p ** + 13,708,170,3120 " + 30,110,627,920p 2
+51,192,637,360p 2 + 67,496,738,992p 1! + 68,704,838,112p
+ 53,318,688,0640° + 30,809,714,304p% + 12,725,677,248p”

+ 3,498,038,784p° + 558,627,840p % + 37,324,800p%)/denom,
and

. o’ ’
Py (all links biocked) = .
(2l links are biocked) (2-4—2,0 +p2)

P, (some Jink is blocked) = (4374p™ -+ 204,849 + 4,219,614p'% + 51,380,244 1*
+417,419,946p 7 + 2,413,276,554p -+ 10,317,600,792 15
+3,414,040,716p * + 83,216,855,968p % + 160,777,520,080p 2
+241,798,721,526p 1! -+ 282,409,938,720p° + 253,860,403,840°
+ 172,390,307, 712p% + 85,554,180,864p 7 + 29,257,680,384p°
+ 6,161,127,040p % + 597,196,800 %)/ denorm

and

Py (some link is biocked) = —| ———
e 1 blocked) (2+2p+p2

24 2p )3
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