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The end-to-end blocking probability is used as a measure of performance for circuit switched
networks and delay is used for packet switched networks. In both cases, alternate routes are
required to reduce the blocking pro bability, increase the throughput, and improve reliability of the
network. In this paper, first, we describe 2 model to compute the end-to-end biocking probability
analytically. We discuss a way in which the redirected traffic does not have to be a Poisson and/or
the network be symmetric. We use state dependent networks to derive the Markovian processes.
Later, we discuss a new symbolic paralief algorithm in which the set of alternate paths between
two given nodes in a network can be computed. This set can be used to compute the set of all

valid states the network could attain. A parallel algorithm is also developed to identify all valid
states among a large number of states.

INTRODUCTION

The end-to0-end blocking probability has been used as a performance criterion to quantify
network reliability. In a network with unpredicted traffic, the shortest path algorithm may not
decrease the the overall blecking probabiiity. It has been shown that different types of routing
schemes for circuit switched traffic with a uniform wraffic, would lead to different performance

trade-offs {1]. It is, however, not ciear how the trade-offs would be affected by non-uniform traffic
on the links,

Three parameters determine the performance of a particular routing algorithm, the ren-time

ci the algorithm in which the appropriate path is computed and established, the probability that
the algorithm fails to establish a connection due to the network congestion, network failure, etc.,
and the amount of randomness used by the algorithm. Peleg and Upfa {2] studied the trade-off
“between these parameters for the problem of routing on a bounded degree network.

In a real network, it is neither practical nor efficient to anaiyze and compute the blocking
probability sequentially. Paralle] al gorithms are required to evaluate the routes within an acceptable
period. This becomes crucial when the network configuration changes due to failure or update.

First, we briefly discuss a new analytical approach which can be used to identify the trade-
offsf3]. The approach is based on a state-dependent technigue in which the end-to-end blocking
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probability can be formuiated. This requires the computation of the set of all alternate paths
between a given pair of nodes in the network. Later, we present a set of parallel algorithms to
compute all alternate paths of different lengths in a network as well as an approach to compute
the set of valid states of the network. Since the number of states grows exponentially with the
number of nodes in a network, parallel algorithms are essential to find the set of alternate paths,
set of valid states. and the balance £quations in a reasonable amount of time,

Since the shortest path algorithm does not guarantee 2 lower blocking probability, especially
when the traffic is not uniform, alternate routing schemes have been widely used to improve the
network reliability {1, 4]. To decide which alternate route is 10 be chosen, knowledge of the
end-to-end blocking provability is essential. This can be obtained, when the distribution of calls
{voice. data, etc.) is known. Several special cases, such as fully connected networks, symmetric
networks, or networks with a specific topology have been studied analytically and/or examined by
simulation models [ [, 3, 4. 5,6,71.

Section 2 presents an overview of the finite state approach using Markov chains to compute
the blocking probability sequenually. Generation of balance equations governing the operation
of the birth-death process or state-dependent queueing system at equilibrium, and the parallel
algorithms to compute the set alternate paths needed for the computation of the end-to-end blocking
probability are also given. Computation of the set of valid states, and state transitions of a network
are afso discussed in this section. Section 3 presents a set of paralle! algorithms to speed up this
computation. Conclusions and open issues are discussed in section 4,

STATE-DEPENDENT NETWORKS: BIRTH-DEATH PROCESS

For nonhierarchical networks, it is shown (1} that there is a cut-off point for the traffic load
before which alternate routing gives lower blocking probability than nonalternate routing. Krupp
[4] developed a mathematicai model for symmetric and uniformly loaded networks with alternate
routing schemes. in this model, the blocking probability is considered as a function of the external
traffic foad and a bistable behavior was observed during overioads. Later, Akinpelu {5] extended
the analysis to nonsymmetric networks and similar instability results were observed. Yum and
Schwartz {1] compared different types of routing algorithms for fully connected and symmetric
networks. Their results showed that alternate routing performs better than nonalternate routing, if
the affic load is light. For heavy traffic, direct routing performs better as far as the end-to-end
blocking probability of a particular link is concerned.

Here, we discuss a technique that can be generalized for an arbitrary network with uniform
or nonuniform traffic on the links. We can thus assume different mean arrival rates, A;;, on
different links 1 < ¢,; < n. and 1 < j. Consider the 3-node network of Figure 1. For each
source-destination pair, there is a primary path and a secondary (alternate) path in the network.

Pr=imp =L =0, py = g + Oy Ps = {2+ {3, and ps = {15 + £y,

A network consists of a set of nodes, N = {n1,n2,--+ n,} and a set of links 7, = {€is 1 <
5,7 £ k1<) Link £y connects node n; to node n; and carries ¢;; channels. Figure 2 illustrates
a network of five nodes and six links and it isa I-faulttolerant, i.e., it can handie one link or switch
failure. Without ioss of generaiity, we assume undirected graphs in this work. A route R is an
alternating sequence of nodes and links, beginning and ending with nodes. In a typical netwark,
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Figure I: A 3-node fully connected network.

N and L might bé measured in tens and the set fi could be much larger.

A call is a basic unit of circuit raffic. Each call is originated from a source node n; and is
connected to anode n;. The call arrival process entering at each node is assumed to be Poisson with
rate A;; and the call holding times are exponentally distributed with mean 1/, for an Erlang rate
of pi; = A;;/u. The call arrival distributions for different nodes are not necessarily uniform. The
call setup and disconnection times are very short compared to the call holding ime and assumed

Figure 2: 'A Configuration of a five node network.

Transmittance Matrix A mawrix Tepresentation can be used for parallel execution and manipuja-
tion of a network. The adjacency matrix A of a network G is an M X nmatrix [a;], with a;; = 1 if
there exists a link £;; between node 7i and node ny, and a;; = § otherwise: where n is the number
of nodes in the network, The powers of the adjacency matrix A give information about the number
of paths from one node to another [8]. The s, enory al™ of Am is the number of paths of length

1]
m fromn; to n;. The adjacency matrix A and the matrix A% of the network of Figure 2 are:

01100 000 2 1
L0011 0021 1
A=1100 1 ¢ A'=1020 0 ]
0110 1 ' 21001
01010 L1110

The reachability marix R of 2 network G is the n x n matrix [ri;] with ry; = 1, if there exists
a path p;; between node n; and node nj, and ry; = 0 otherwise. The entry of the reachability matrix
can be obtained from the powers of A such that ri; = 1, if and only if for some m, a,(}“) > 0,

We define the rransmirtance matrix T of anetwork G to be an n x n matrix such that
tij = €y, if there exist a link from node n; 10 node ny, and ¢;; = O otherwise. ¢;; is the symbolic
representation for the link between nodes n; and n;. The transmittance matrix can be manipuiated
using symbolic algebra software such as MACSYMA. To fitthe following algorithminto a parailel
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cube matrix muitiplication, we assume 0 < i, J € n ~1The m'* power of the transmittance

matrix T provides alternate paths of len gth m between two nodes n; and n ; subject to the following
conditdons:

L 1™ = 0ifand only if i = ; and 0 < j<n-—l,

A R N T P

e tg") = tf;"), where cisaconstantand 0 < i,j < n — 1.

t,(;“’ is the 1, j entry of 7™ and gives the alternate paths from node n; to node n; in the form
of the sum of products of the links. In order to implement this algorithm in parallel, we can use
the mawix multiplication algorithms discussed in [9, 107 with adapted to use the above conditions.
The resulting algorithm is given in the procedure ALTERNATE ROUTES which follows. This
procedure takes the transmittance matrix 7', and m as input and returns the alternate paths matrix,
R of degree m as output. 1t can run on a cube-connected SIMD (Single Instruction, Multiple
Data) computer with n° processors. The processors can be thought of as being arranged in an
X n xn array pattern. In this array, processor P, 1 < s < n* occupies position (¢,7, k), where
s=in+in+kand0 < 1.5k € n—1. Ithas three registers A(3, 7, k), B(3, 7, k), and R(i,7,k).
[nitially, the processors in positions (0,7,4),0 < j k< n — [, contain the ansmittance matrix,

thatis, T(0, 7, k) = ¢,.. Atthe end of computation, these processors contain the alternate route
matrix, that is, R(0, 5, k) = re0<k<n—1.

procedure ALTERNATE RQUTES (T,m,R)
Step 1: {The diagonal elements of the transmittance matrix are made equal to 0}
forj=0ton — 1 doin parailel
R(0,5,j) ~0
end for.
Step 2: {The A registers are copied into the B registers}
forj=0ton—1doin paratlel
fork=0ton — | doin parailel
B(0,5,7) — A(0,7, k)
end for
end for,
Step 3: {The alternate routes matrix R of degree m is obtained
through power m of the repeated symbolic muitiplications}.
5 18 the sum of product with m product terms.
fori=1tomdo
(3.1) CUBE MATRIX MULTIPLICATION {A,B,R)
B2 R(0,5,7) —0
(33 forj=0ton—1doin parailel
fork=0twn—1doin parallel
i, Tk X Ty = LT
ii. Tie + ryp = Tik
i A0, 5, k) = RO, 5, Ly
v. B{0,7,k) = R(0,;, k)
end for
end for



end for. O

The algorithm can be implemented in parallel by invoking procedure CUBE MATRIX MUL-
TIPLICATION of [9]. The procedure runs on a cube-connected SIMD computer with N = »?
processors, each with three registers, A, B, and C. Step 1, 2, 3.2, and 3.3 take constant tme. In
step 3.1 procedure CUBE MATRIX MULTIPLICATION is iterated m times, 1 <m<logn. It
follows that the running time of this procedure is O(log* n). Since n’ processors are used, the
overall running time is O{n* log® n). The transmittance matrix and alternate routing matrices, 772,
and T°, of Figure 2 are computed as follows:

G € &3 0 0O
G2 0 0 ly s
T=14y 0 0 44 O
0 &4 Ly 0 dys
0 s 0 d55 0

0 0 0 8 by + iz bay 8o Ups
¢ 0 fag by + Gy U4y fa5 45 {4 {45
T = 0 baa bag + €yg &34 0 0 {34 Las
£y3 fyg + &y €y bas €as 0 0 a4 bas
6z &ys €24 €45 34 Las €25 &a5 0
0 {13 bpq £ay €12 &4 £34 G bos bas 13 fag Las + £pp bog bus
813 &4 laa 0 bas baq Las ti2 413 bag 0
T = £12 aq fag tas €34 fas 0 12 813 (2 faq 25 £34 + €3 €13 £3s
{12 a5 Las €12 &y3 €aa €2 &3 €4 0 0
b3 £3q €45 + €13 €24 Uys 0 24 L35 L34 + £yg €43 £o5 ¢ 0

To compute the set of valid states the network could artain, a bit map can be used. We create 2
one-to-one correspondence between each bit and a path in the network. We assume each link carries oniy
one channel. For higher number of channels, the bit map can be extended. Each state of the network can
be uniquely defined by a vector. A binary vector 8. represents each state. Bli] = | if p; carries a call,
I £ ¢ < p. For higher number of channeis per link, Bii] could be assigned larger integers. The state
transitions can be computed by cail amval (Arr) or call departure (Dep.) events. There are 64 possible
states for the network of Figure 1. Only 14 of them are valid. The network can not get to the other 50 states
due to limited available channels on some links. For example, the state in which a direct call is connected
via €35 and an indirect call is connected via Ps Or pg is not a valid state, If we increase the number of
channels per link 10 2, then we would have 3%=729 states and onty 85 of them are valid. The next step
is to compute the state transitions. The state transitions can be compuled by applying events such as call
arrival (Arr) and departure (Dep.) to each state of the network. The ai gorithim finds the shortest available
alternate paths when there is more than one altemate path in the network. The state vectar comresponds to
paths, pr = £12, p2 = 13, p3 = 833, pa = L1343, ps = €13 -+ £33, and ps = £12+4 €13. These are illustrated
on the second column of Table 1. For example, state 1 corresponds to the network when all links are idle.
State & represents the network when two cails are in progress; a direct call on py, and an indirect cali on 5.

Let P be an array of size p representing the number of calls on different paths and let pi be a path
which covers link(s) ¢,; for some 1 and Joi< il <4y <n and !l <k < po In ower words, ¢,
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is embedded in path Proand I < k < p. The following conditions can be implemented:-in parallel to
detemine the validity of 3 particular state. The hit map Bli, I <i<p represents a valid state if-

L. for every iink, &30 < flow( 4i;) < ¢4, where flow(€;;) is an integer representing the number of
occupied channels on fink £:;, including channels for redirected traffic.

P
2. Zﬂow{P[k]) < Mintmum ¢y, where fink €i; is a link on path Per LS 4,7 <ni< .
k=]

This procedure is inherentty parallel and can be easily implemented on a parallel machine. The

Lk flow( PIE]) takes logp and the Minimum ¢ij takes log ¢ steps, where ¢ is the number of links
in the network.

- Table I illustrates the states and their transitions for the network of Figure 1 with one channe} per link.

Table 1: State Transitions.

State | Cument | Events { Path o Next [ State | Currert Events | Path | Next
No. | State, B[] | (inpuy) | State | No. | State, Bl | (input) State
l (00000 AT, J P 100000 g8 | 010010 Dep. 7 | 000010
Arr. ’ 7| 010060 Dep. 7z [ 010000

L A | gy | 001000
2 1000G0O AIT. ps | 100100 9 011000 Arr 2o L1000
Arr P2 | 110000 Dep. Pz | 601000
AT, | 101000 Dep. s 1-010000

Dep. P (00000
3 010000 | Am 71 110000 10 001001 Dep. ' p3 | 000001
Arr me | 010010 Dep. rs | 001000

Arr 3 1011000 :

L i Dep. 7| 000000
4 001000 Arr. b1 101000 L1 000100 Arr, i 103100
I Arr 7 | 011000 < Dep. ps | 000000

i A, Ps 001001

i Dep. 7 000000
5 100100 ( Dep. P | 000100 12 11000 Dep., pr | 011000
| Dep. 1 ps | 100000 Dep. | m | 101000
L 4 N i Dep. | py | 110000
[ 6 110000 | am J m 111060 13 000010 A 7 | 010010
' Dep. | »1 | 001000 { Dep. | 000000

i Dep. i opy | 100000
7 101000 } AT | p D T1I600 | 14 00001 T Am P 001001
Dep. | mof 001000 ’ Dep. Ps 1 000000

| } Dep. | py | 100000 |
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Having the states and their transitions. one could generate the corresponding balanced equations. The

batanced equations for the state transitions of Table | are:

(Az + Ais + 23)5
(Mz+ Az + A+ pi)5
(M2 + A+ A+ 3305
(A2 + A+ Aag + 23 )5y

(12 + 1112) S5

{A3 + 12 + 113)5

{A3 + p12 + 423357

(413 + 113)5%
(A2 + p13 + 1223) 5
(k23 + 123) 510

#1252 + 11353 + p23Ss + 1251+ 11813 + taaSie
AMaSt + 2 Ss + 1135 + un Sy

A8t + 1286 + i3 Ss + 3 So

A28 4 11257 + 1138 + 13 Sio

Az + Az

AaSzd Mz S+ 23 Sin

A3Sy + Az Ss + uis S

Aady 4 AiaSis

A2353 + A13Ss + pi S

A2384 + A23Sig

(Mz+u)Sn = u3Ss

(piz+ps +p23)S2 = ApSs+ Ansy + Ay
(Aa+p)Si3 = wisss
(A3 + p23)S14 = Sy

Here A;; is the arrival rate between node : and node j for the Poisson process, i,; is the departure
rate for the same link, S5; is the probability that the network is at state 1, and 12, S = 1. Thecall

holding times are assumed to be exponentially distributed with the same parameter, 4, and hence
#y=pforall 1 <i7,5 <nand: < ;. By dividing both sides of the equations by g, we have

(P12 + i3+ p3) 5, = 524 8534+ 5s+ 511 + 513+ Sug
(Patps+tpn+1)S) = ppS + Ss+ Sp+ 55
(pztpis+pm+ )83 = p13§) + Se+ Sy + So
{pn+pis+pn+ 15 = pisSi+ 5+ 5 + Spo

255 = p1aSh + p12 Sy
(P3+2)Ss = pi3Sa+ S+ Spn
P13 +2)87 = paaSa+ p12Ss+ )2

25 = p1aSy 4 p1aSis
{2+ 25 = p3Si 4 pi3Set Spn

2510 = puSi+ S
o+ 1)5: = S
351 = p23Ss + p13St 4+ p12s
(pa+ 13813 = 5
{p23 + 1514 = Sin
25 = L

Using the MACSYMA or LINPACK software packages the system can be solved for S's, 1 <

¢ £ 14. The above technique can be used to compute the end-to-end biockin ¢ probability between

two nodes, a set of nodes, or the entire nerwork as a function of waftic intensity pi;, 1 <4, < n
and 1 < ;{31

CONCLUSIONS

The results presented in this paper indicate that there is a cut-off point for the affic intensity
before which alternate routng gives lower blocking probability than nonalternate routing. An
analytical model is developed to compute the end-to-end blocking probability of a network. A
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simulation mode! is developed to study different aiternate routing with adaptive capability. Several
adaptive routing algorithms for non-hierarchical distributed circuit switched networks have been
studied. Blocking probability, average cali Sewp time, and average number of crank back calls
were extracted from the simulation ag performance measures. The results shows thatlocal adaptive
routing schemes. in which explicit information is shared among nodes could decrease the average
blocking probability and call setup time. Sharing information about the network status (nonlocai
adaptive routings) vouid fead to even better performance. Further study is needed to identify the
trade offs of using adaptive nonlocal reuting aigorithms,
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