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Solution of the Landaﬁude-Gennes Equations of Liquid
Crystal Physics on a SIMD Computer *

Paul A. Farrelit Arden Ruttan t Reinhardt R. Zellert

Abstract

We wili describe a scalabie paralle] finite difference algorithm for computing the
equilibrium configurations, of the order-parameter tensor field for nematic liquid
crystals, in rectangular and ellipsoidal regions, by minimization of the Landau - de
Gennes {ree energy functional. In this formulation, we solve for a symmetric traceless
3 % 3 tensor at each point. Our implementation of the free energy functional includes
surface, gradient and scalar bulk terms, together with the effects of electric or magnetic
fields. Boundary conditions can include both strong and weak surface anchoring, The
target architectures for our implementation are primarily SIMD machines, with 2 or
3 dimensional rectangular grid networks, such as the Wavetracer D'FC or the MasPar

MP-1 as opposed to hypercube networks such as the Thinking Mackines Corporation
CM-2.

1 Introduction: The Problem

!
We will describe a finite difference approximation of the equilibrium configuration of liquid
crystals in an ellipsoidal region,

$0 = {(ar sin{d} cos(6), br sin{@) sin(8}, cr cos(¢)) : 0 < < L0<8<or, 0<¢ <},

where i, b and ¢ are the three semi-axes of the ellipsoid. See [2] for the details of the finite
difference approximation for rectangunlar regions. As in Gartland [3], we use the Landan-de
Gennes formulation which expresses the free energy in terms of a tensor order parameter

fleld Q, and the free energy is then given by

PO = B @) + Fuael@) = [ £+ [ ()

where Q{x}isa 3% 3 symmetric, traceless tensor and where £ and 8 represent the interior
and surface of the ellipsaid respectively.

The representation of Fval{@) uses the convention that summation over repeated indices
is implied and that indices separated by commas represent partial derivatives. It is given
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by (see, for instance {5])

fvol(Q) lLEQaﬁ.TQaﬁ,W + %L2Qaﬁ,.ﬁ@am'y + %LSQaﬁnQav,ﬁ
A trace(Q%) — g Btrace(Q?) + 1C trace((?)?
%D trace{Q?)trace(Q%) + éE trace(Q%)* + FE trace(Q%)?

AXmaxHaQafﬁIiﬁ - AfmaanQnﬁEﬁ .

{1

P+ 4+

where Ly, Lz, and L3 are elastic constants; A, B, C, D, E. and E' are bulk constants; and
H, AXinax, E, and Agyay are the field terms and constants associated with the magnetic
and electrical fields respectively. The surface free density fiurr has the form

) fant(Q) 1= 3 Virace((Q - Qu)?)

where (Jo is a tensor associated with the type of anchoring of the surface elements and V
is prescribed constant.

For P € (2, the tensor Q(P) will be represented jn the form,

QP = (Qup)d 5oy
= (P)E1+ @(P)E; + q3(PYE; + ga(P)Ey + qs(P)Es
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similar to that in Gartland [4], where 1:( P)}i.., ate real-valued functions on ).

2 The Implementation
We discretize the probiem hy dividing the ellipsoid Q into [ x J % K regions
v(d, 7, k) = {{arsin(4) cos{§), brsin(¢) sin(6), ercos{ @)},

for 1<d<7,0<7<J, and 0 < & < K, where for given
Gk — % A %i, ;- % byt %, A, — ~’”¥ <8< 0+ %ﬁi, where

= AT, gy = jAD, 8, = kAR and where Ap = E‘wr, A¢ =5, and A = 7\‘?_;{, and one
z

region centered at the origin
v{0,.0,0) = {{arsin(¢} cos(f), brsin(¢) sin(#), cr cos{é)): 0 < r < ;.31 0<8 < om,
b0<g <7}

The discrete interior free energy integral is then given by

{3) /ﬂfvol(@) ~ Z Jeoat(Qry, ¢, 8:)) % volume(v(i, j, k).
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The 2, y, and z derivatives in (1) are approximated using the chain rule and central
difference approximations of the derivatives of {g(P)}3_, with respect to r, 8 and 4.
Fxceptions occur when ¢ =0, ¢ = 0, and ¢ = 7. In those cases the z, v, and z derivatives
can be approximate using direct divided difference approximations of &/dz, /8y, and
8/8z, provided we require that 7/2 be an integer muitiple of both A& and A¢ . With this
formulation, we can approximate fu,(@Q{F)) accarately using the val ues of {g;(P)}E_} at
P and at 6 points immediately adjacent to P.

By our choice of Ar , the points on the surface of the ellipsoid are (rjpq,¢;,0:) =
((I+ DAr, jAS, kAE}}, for0<j<J, 0 < k < K. Upon setting a(f, k) = {{rr41, ¢, 0)
quw%‘?i §¢§¢J+ 5 ,Bk—— <H <8, + } 0<7<J,0<k <K, wecan approximate
the surface energy by

(4) / f‘su_rf(Q) = Zfsurf{Q{TI-{—l:‘i’Ja Bk‘)) X a'rea(a{], k))

5k

where for(Q(rri1, @5, 6;)) can be evaluated using only the data at the point (rre1, &5, 0).
Using (3) and (£), we have the following approximation of the Landau-de Gennes
free energy which is second order accurate.

F{) 2205k Seol(Q(ri 65, 0k)) x volume(w (i, 7, k))
Sj,k fsurf(@(r.f"}v‘iad)jagk)) X a:r‘ea{a(j,k))
E:':j’k h(Th qﬁjaek)a

where h{ry, ¢;,8;) can be evaluated using the values of {g,}3_; at (7, ¢, 0).) and six adjacent
points.
With the discretization (5), we have reduced the problem to one of minimizing

{6) min Y hirs, i, 0k

nak

(5)

o+ 2

over all choices of {g¢(r;,d;,8:)15.,. To solve this unconstrained discrete minimization
problem, we use Newton’s method to find solutions of

a Z;“j‘k h(Th qu? 9&.)
Bqelrs, ¢3.04)

for0<i<7+1,0<7<J,0<k< K, andé=1..5

Bach iteration of Newton’s method involves solving a linear system, whose matrix is the
Jacobian of {7), and then using that solution to update the iterate and the Jacobian, after
which the process is repeated. Issues relating to the efficient generation of the Jacobian of
(7) and to efficient methods for solving the linear system in the Newton’s procedure are the
primary concerns of this project.

The machine used for the implementation of this project was the Wavetracer Data
Trausport Computer (DTC-4), located in the Department of Mathematics and Computer
Science at Kent State. The processors of the DTC-4 can be configured either as a 16 16 % 16
cube, for tliree dimensional applications, or as a 64 x 64 square, for two dimensional
applications. The Wavetracer DTC-4 provides the ability to partition the memory of each
precessor to provide a larger number of virtual processors,

At each point of the ellipsoid the tensor order parameter ¢ is defined in terms of the 3
unknowns {gz(F)}s—1,5, and each set of 5 unknowns {ge{ F)}e=y 5 is stored in asingle virtual

?->

(7) o glh i3k = =0,
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processor. For each go( P} there is also a corresponding row of the Jacobian matrix. The
nonzero constants of that row are also stored in the memory of the processor associated
with the discretization point P. Each non-zero constant, in a row of the Jacobian associated
with P, also corresponds to another virtnal processor with which the values of {g:(P}}e=1 5
at P must be communicated when the Jacobian matrix is updated,

In our implementation, the stencil of an interior processor P, ie. the set of processors
with which P, must communicate in order to update its row of the Jacobian, consists of
all processors that are exactly 2 processors away from P. Exceptional steacils occur for
processors located on the boundary of the array. To efficiently handle these exceptional
situations, we group processors into equivalency classes: two processors are equivalent if
their stencils have the same representation. We process these equivalency classes starting
from the most general class (interior points) through to the least general classes {usually
processors on the corners of the array). All operations performed on a given equivalency
class are also performed on all less general classes. Nonexistent connections oceurring in
a less general class are avoided via zero coefficients. We achieve substantial parallelism
from the fact that when we process a given equivalency class we only need process those
connections which do not oceur in a more general equivalency class.

The procedure described above produces a program which stores the geometry of the
problem in the SIMD code itself, and as such, that program is both difficult to produce and
to maintain. However, the alternative, i.e. storing the stencil as pointers in a processor’s
local memory, requires substantial sequential processing unless the machine permits (and
the Wavertracer does not:permit it) parallel, indirect, network addressing,

To circumvent the programming difficulties associated with storing the geometry of the
problem in'the program code, we have developed a symbolic algebra program which takes
as inpul a list of points and their stencils and produces the layered SIMD code described
above. The symbolic algebra program is quite easily maintainable and extensible. Using
it, we will be able to produce SIMD code for other geometries such as cylinders which are
of interest to liquid crystal researchers.

In the ellipscidal case, our investigation into the choice of the Lnear solvers to be used
in the Newton step is only in its preliminary stages. However, results from [2] and [g]
suggest that multilevel methods (see, for instance [1}) may be the best choice, af least in
those cases where the Jacobian of {7} is positive definite.
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