Parallel Computing 19 (1993) 925937 925
North-Holland

PARCQ 772

Short communication

Algorithms for LU decomposition
on a shared memory multiprocessor

John J. Buoni ?, Paul A. Farrell ® and Arden Ruttan®

“ Dept. of Mathematics, Youngstown' State University, Youngsiown, O 44242 US4
5 Dept. of Mathematics & Computer Science, Kent State University, Kent, OH 44242 USA

Received 31 October 1990
Revised 18 July 1992, 21 October 1992

Abstract

Buoni, J.J., Paul A, Farreli and Arden Ruttan, Algorithms for LU decomposition on a shared memory
multiprocessor, Paraliel Computing 19 (1993) 925937,

In this paper we propose an improved algorithm for the parallel LU decomposition of an (m + 1)-banded
upper Hessenberg matrix on a shared memory multi-processor, which requires O(2am? /p) parallel opera-
tions, where » is the dimension of the matrix and p is the number of processors. We show that for the special
case of tridiagonal matrices this algorithms has a lower operation count than those in the literature and vields
the best existing algorithm for the solution of tridiagonal systems of equations,

Keywords. Shared memory muitiprocessor; LU decomposition; Hessenberg matrices; tridiagonal matrices;
parallel algorithm.

1. Infroduction

A number of authors over the last two decades have written on parallel algorithms for
solving tridiagonal systems (See, e.g. [3,5,6,8—12]). We present a tridiagonal solver, which has
a lower operation count than those in the literature for solving a single system. In addition,
there are a number of common numerical situations, such as in the ADI method, where one
needs to solve tridiagonal systems of the form Ax = b, 1 <i <k, where A is known ab initio
but the b;’s are not all known at the start of the computation, but rather arise as a result of an
iteration process. The method presented here, since it produces an explicit LU decomposi-
tion, has added advantages in these cases.

2. LU decomposition algorithm

We shall, in fact, consider the LU decomposition of an s X n upper Hessenberg matrix,
since the analysis is not significantly more difficult and further the additional generality leads

Correspondence fo: A. Ruttan, Dept. of Mathematics & Computer Science, Kent State University, Kent, OH 44242,
USA.

0167-8191,/93 /$06.00 © 1993 - Elsevier Science Pubtishers B.V., All rights reserved

926 J.J. Buoni ef al.

to insights, which produce a more efficient algorithm. Let A4 = (a,,) be a banded n X n upper
Hessenberg matrix with band width m + 1, i.e. a;; # 0 only when max{l, { — 1} <j < min{n, m
+i—1L, 1<i<n We will assume that the LU decomposition is required for use in an
iterative method of the type described in section 1. Of course, the LU decomposition could
also be used for the solution of any linear systems or to find the eigenvalues of 4 using the
LR method [7]. In any case, it suffices to consider the case where a,,,,#0,1<i<n—1,
since otherwise the matrix is reducible, and we may consider the LU decomposition of the
subproblems resulting from the reduction. Throughout this paper we will use the convention
that any element with a nonpositive index has value zero.

As in most algorithms for shared memory multiprocessors, the object here is to partition
the problem into a number of subproblems suitable for solution by tasks running on the
available processors. We shall consider the general case of p processors, where p <n, but is
not otherwise related to the size of the matrix problem. That is, in particular, we do not
require that p be much less than n, or of order n, or much greater than n. We restrict
consideration, in the paper, to the shared memory case since we do not wish to introduce
considerations of communication complexity. On shared memory multiprocessors, these do
not exist-and analysis is performed solely in terms of computational complexity, that is the
number of arithmetic operations. For simplicity and compatibility with the analysis of other
similar algorithms in the literature, we shall consider all floating point operations as taking
the same time.

Assuming that A has an LU factorization

A=LU,
where L is a unit lower triangular n X # matrix and U = (uif) is n X n upper triangular, it is
readily verified that L is actually a bi-diagonal matrix, with unit diagonal, and I/ is an upper
triangular banded matrix of bandwidth m. The special form of L allows one to readily
determine L. One finds that L™ = (l:-j) is an n ¥ n lower triangular matrix given by

N e

=8 =it _ (1)
0 i<j.
Using (1) and forming U = L~ '4, one obtains, for 1 <i, j<n
min{i,j+ 1} R min{i,j+ 1} i
Uy = p fioa,; = h Il (—1)ag. (2)
s=f=m+1 s=j-m+1t=5s+1
As in the tridiagonal case, the well known substitution (cf, [4], pp. 473-474)
y =1
3
L=y, /vy, i=2,3,....n)
can be used to simplify (2). Equation (2) reduces to
finli,j + 1) A
ug= Y, (=1 vau/y, 1si,j<n. (4)
s=j—m-+1

But u;,,,=0, for 1 £j<n—1, and therefore (4) yields the following linear systems in the
unknowns y;:

yi=1
y,=0,7=<0,

j _ (5)
Yiv18544; = > (_I)Jms}’sa”, l<j<n-—-1.

s=j—m+1

Algorithims for LU decomposition 927

Actually, (5) defines an m + 1 banded triangular linear system
Ty =e (6}
where y = (y;, yo,...,y,)h e=(1,0,...,007, and T= ()71, is given by:

1 if i=j=1,
b= (”“I)ivjaj.i—} f=sii>1,
0 JF>i.

Thus the problem of finding an LU factorization of an upper Hessenberg matrix reduces to
solving the banded triangular system described in (6) to obtain the v,’s and then using the
sofution of that system o evaluate L and U. In practice, L may be determined from Eq. (3).
To determine U, note first that the elements of the (m — 1)st super-diagonal, Uiy Satisfy
Uijem-1=Qiiymeyy fOr i=1....n—m+1 Also u; ,=a,; for j=1,...,m. Thus these
elements do not require any calculation. The (m - 2)nd super-diagonal may then be calcu-
lated from the {m — 1)st using

LUy s piion t Uimajw2 = Qimeig, E=2, 0 n—m+2.
Similarly, the jth super-diagonal is given in terms of the (j + 1)st by

lu, FU; =4

[And EER W E IS Ed:

pjeis ™2, n—]. {7)

Note that each element depends only on a single element of the next super-diagonal and on
known values from L and A. Thus, the calculation of each super-diagonal of U is perfectly
parallizable. In fact, the main diagonal may be obtained using 1 division rather than the
maltiplication and subtraction in (7) by

U =a, /e, =2, 0. (8)

Further, the calculation of the super-diagonals can be chained, since the dependency graph
for U, using (7} and (8), is

® . 'y ® ® 0 4] 0 0
0 0 ® 1 I ! . 0 t]
U=})
0]) 1
4
o .- . . 0- .._

where e indicates that the value is already known or can be calculated from L and A, and |
indicates that the value at the tip of the arrow requires that at the end, in addition to values
from L and A4,

The calculation of L using (3) requires n — 1 divisions. From (7), the elements of the jth
super-diagonal, for j > 0 can be calculated using 1 multiplication and 1 subtraction, and from
(&) those of the main diagonal can be calculated in 1 division. It is clear that the number of
elements in the jth super-diagomal of U is n—j for j=0,...,m — 1. Note that for all

928 JJ. Buoni et al.

clements of the (m — })st super-diagonal and for the first element of each of the other
super-diagonals no calculations are necessary. Hence the total computations for I/ is

m—2

(n—1)+2 Z (n—j—1).

This evaluates to
a(2m—3) — (m*—m—1). {10)

The [atter term is negative for m = 1. Hence we get the following upper bound for the
complexity of calculating U/

n(2m ~3).

Note that in the case of a tridiagonal system, m =2, (10) reduces exactly to » — 1. Hence
using p processors L and I7 can be calculated in the general case in

[2n(m -1 l

e (11)

parallel operations, and in the special tridiagonal case in

[2(n-1)/p] (12)

parallel operations.
There remains only the solution of the triangular system 7y =e.

3. Algorithms for the triangular system

it should be noted that a significant portion of the time in the LU decomposition algorithm
is spent in solving the triangular system {6). The major drawback to the algorithm given in [6]
and the generalization of that algorithm given in [1] is that it requires a large number of
m > m matrix products. In [2], Chen et al. describe an algorithm for solving a banded
triangular system which requires substantially fewer m X m matrix products. The special
nature of the triangular system given in (6) allows for certain simplifications of the original
algorithm, which improve the computational complexity. We shall give here the general form
of the algorithm for p processors. If we restrict the values of p, as in [1], a slightly better time
complexity results.

We begin by partitioning T into g blocks, cach of which is s X5, where g=2 and g is a
power of 2. Thus s =n /g = m and we may write

L,
U2 LZ

where L, i=1,2,...,g is an s Xs lower triangular matrix with bandwidth m and U,
2<ix<gisan §Xs upper triangular matrix, with nonzero entries only in the last m columns.

Algorithms for LU decomposition 929

The algorithm begins by multiplying equation (6) by D = diag(L,’, L7"',..., L") giving
DTy = De where

IS
LEIUZ I_c
L; §U3]s
DT = “ ,
Ly'\u, 1,
i L, L
Lt Fu,
Lyt 0
Lyt :
De = }
0
-l O
N Lg 1
and v, is the s-vector (1, 0,...,0)".
To compute this, one needs to determine L; 'v,, L;'U,,- -+, L 'U,. Since each diagonal

element is involved in one division and each off diagonal element in one multiplication and
one addition / subtraction, a careful analysis of the standard sequential algorithm [7, p. 108]
shows that L; 'p; can be computed in (2m — 1)s — m? operations using one processor. Since
each U, 2<j<g has only m nonzero columns, to compute L j“]b@ one must solve m
independent systems of the form L x =c. Therefore there are a total of (g — 1)m -+ 1 such
systems to be solved. Using p processors this gives [(smg — m + 1)| systems per processor. This

can be accomplished in
[(mg+m+1)/p][(2m——])n/g—mz] (13)

operations. Note that each processor is performing individual sequential operations here and
hence the only loss of efficiency is the failure to employ up to p — 1 of the processors at the
end.

Since the first s — m columns of U, 2 <j <k are zero, so are the first s —m columns of
Ljfll/f,-, 2 <j<g If we reblock the system D7y = De into alternating (s~ m) X (s —m) and
m X m blocks we obtain

IS*m
0o I,
R
o 0, o0 I,
DT = Py
Q; I
U
o P, I,
o g, o I,

930 LT Buoni et al.

where s —m and [, are (s —m) X (s —m) and m X m identity matrices respectively. Block-
ing the vectors y and De in the same fashion vields y = (e, f, €5, f5, " *, €. f,)T, and
De=1{(e, f,,0,0,- - 0)Y where e; and f; are {s —m) and m vectors respectively.

The system DTy De can be decomposed into

“Pifioi=e i=2,....8
Qificy=~fi i=2,....8.

Note that f;=(IT/_.,(-=Q;Nf,. Using a variation of the algorithm in [1], one calculates
fas f3. -+ f,. This requires & = log g steps each involving products of the form Q,Q or Q;f
To be precise, in the ith stage, 0 <i <k — 1, there are 2 products of the form Q fis that is
matrix-vector products, and 2/(g/2°** ~ 1) products of the form Q,Q,, that is matrix-matrix
products. Thus, there are the equivalent of mf2' + 2i(g/2'*! — 1)m] inner products, each of
size m. These are assigned uniformly across the p processors. Each takes (2m — 1) opera-
tions, using 1 processor. Hence the time for the ith stage is:

m(mg/2—2'(m —1)) l

(Zm—l)[E

Thus, summing over all the stage, the total operations to obtain the fs is

m{mg/2~2(m~—1
(2m - 1) Z [(me/ «))] (14)
P
The final stage of this algorithm involves calculating the e;’s i=2,..., g. Since P, is an

(5 —m) X m matrix, the calculation of P, f;_, is equivalent to s — m inner products of length
m. Since there are (g — 1) products, P,f,_,, there are (g — 1)(n /g —m) inner products of
length m, which will require a maxirmum of

n—m(g~1)—n/g}
p

(2m — 1)[(15)

operations per processor. Combining (13), (14} and (15) one finds that using this algorithm,
one can solve the banded triangular system (6) in

[mg _: =][(Zm ~Vn/g—m’} +(2m ~ 1) Z [m((} g 2 1”]

r

—M(g—l)‘n/g] (16)

+(2m—1)v .

operations. Combining (11) and (17) we find that one can calculate the LU decomposition of
an {m + 1) banded upper Hessenberg n X n matrix using p processors in

m(0.5mg — 2 (m — 1))‘
p

[mgwmmkl

; }[(Zm—l)n/g-—m T+ @2m-1) 2 I

+(2m_1)[”“m(8“1)—n/g]

P

p

Algorithms for LU decomposition 931

It is clear that the time complexity here depends not only on the size of the matrix », the
number of bands m, and the number of processors p, but also on the size and number of
blocks g used in the algorithm. If one chooses n, m, and p to be powers of 2 and sets
g=p/m as in [2], then an upper bound for the time complexity can be readily determined.
Indeed, since mg —m + 1 <mg =p, (13) reduces to

(Zm—n/g—m*=(2m—ynm/p — m?. (18)

Likewise, since

m(mg/2 -2 (m - 1)) - m{mg/2) %_nl, (19)
p p 2
Eq. {14) becomes
m m
(2m-1)5 log(g)%(Zm-—i)E log(p/m}. (20)

Similarly for (15), since (g — 1)X(n/g — m) < n - mg, we have
n
(Zm—l)(;—l). (21)
Therefore an upper bound for the time complexity is

(2m2+3mw3):’;~+(mz——nzi)log(p/m)wmz—zm+1. (22)

For the tridiagonal case (i.e. rn = 2), the time complexity to produce an LU factorization is
n

11— +3log(p/2) - 9. {23)
P

When the number of processors p < n, the first term dominates. For a tridiagonal matrix this
becomes

n
11; +0(1). (24)

Thus we find that the above algorithm is always preferable to that in [1}.

Finally, one can complete the solution of the tridiagonal problem Ax =5, using the
algorithm given in [2], which is valid for all p <n. This algorithm solves a unit triangular
system of bandwidth 2 in 5(n/p) + 2 log{ p) — 5 operations (cf. [2}, p. 274). Thus, including the
normalization of U and b, we can solve Uz = b and Lx =z in at most

n .
12— +4 log(p) — 10. (25)
P

Note that, whenever p >3 X 2'/% = 3.78, this is better than the method in [6], which also
involves a large number of matrix products.
The total time to solve a tridiagonal system is at most

n
23; +7 log(p) — 19. (26)
While the choice of g = pm simplifies the complexity analysis it is doubtful that one should

make that choice in practice. In fact, the numerical experiments described in the next section
indicate that one should probably choose g = n /m.

932 JJ. Buoni et al,

4, Numerical results

We shall consider the implementation of this algorithm on a shared memory multiproces-
sor. Most current machines of this type, which are in widespread use, are of the MIMD type
with local caching to reduce bus contention. Among these are the Encore Multimax, the
Sequent Balance and Symmetry, which have specially designed bus architectures. Such
architectures are now widely believed to be limited to approximately 30 processors before bus
contention becomes such as to cancel the performance enhancement of adding more proces-
SOTS,

We implemented the algorithm on an Encore Multimax 320 and a Sequent Balance
B21000. These processors both have efficient caching, which reduces the effect of possible bus
contention,

The algorithms described above was first run on the Argonne National Laboratories
Advanced Rescarch Computing Facility’s Encore Multimax 320 with 20 processors. Bach
processor is a National Semiconductor 32332 chip running at 15 MHz, The Encore operating
system only permits the allocation of processes, which may or may not run on separate
processors. Thus care was taken to undertake the timings when the load on the system was
very low (less than 0.10) and no more than 16 processes were tequested. In such circum-
stances the processes can normally be guaranteed to run on separate processors. Even then, it
is clear that at 16 processors, in 2 multiprocessor environment of only 20 processors we are in
severe danger of suffering contention for one or more of the processors. This feads to slight
degradation of performance over that predicted, when using a high proportion of the
processors. The code was written in Encore Parallel Fortran (epf). This compiler provides an
auto parallelization feature which will attempt to run code using multiple processors without
explicit directives from the user. The implementation of the algorithm did not use this facility
but explicitly scheduled tasks using the parallel doall and barrier constructs. The timings
were undertaken for a matrix of dimension 250000. Because of the limited number os
processors available, the algorithm was tested only for the tridiagonal case (m = 2), We also
include the efficiency of the algorithm which is defined as:

T,

5

x T~

fod

efficiency =

where 7T is the time for a sequential version of the algorithm and T, is the time for the
algorithm on p processors.

The timings given in Table I indicate that the algorithm does in practice require time
inversely proportional to the number of processors used and hence shows a linear speedup.
The efficiency figures reflect the fact that the algorithm was run in a multiprocessor
environment with swapping and bus contention.

More extensive tests were then undertaken, on the Sequent Balance B21000, in the
Department of Mathematics and Computer Science at Kent State. This has 26 processors,
each with a 32-bit National Semiconductor NS32032 capable of 0.75 MIPS, and 32 Mb of

Table 1

Execution time for tridiagonal case, with T, = 50.9

Processors User time Efficiency
4 15.8 80.5
8 8.0 79.6

16 4.3 74.0

Algorithms for LU decomposition 933

shared memory. The Balance operating system, DYNIX, provides the ability to bind processes
to processors, using the processor affinity facility, and also a utility team, which modifies
system parameters to permit more accurate timings. The latter gives the highest priority to the
program and disables swapping, page fault frequency adjustments and process aging. These
privileges allow a user program to execute with a minimum of system overhead to distort
benchmark times. This facility was employed in all the timings given below, and effectively
eliminated contention for the processors, although bus contention was still noticeable for
more than 16 processors. The coding used the Sequent parallel directives to parallelize do
loops in the Fortran code, library calls to the microsecond clock for the timings and to the
parallel processing library to set and manage the number of processors. The overhead of these
operations was negligible. The timings do not include the initial time to spawn the processes,
since in a practical situation these would normally be spawned in the code preceding the call
to the LU decomposition routine.

Extensive tests were undertaken for matrices with bandsize m ranging from 2 to 10, and for
matrix sizes, n, from 2560 to 98304. Some representative results are presented below in Fig. I
which, on the left gives the speedup for a problem for a matrix of size 98304 and bandwidth 3,
and on the right gives the speedup for a problem for a matrix of size 16384 and bandwidth &,
Speedup, §,, is defined as

s T,
T
where T, is the time on p processors and 7T, is the time for the sequential version of the
algorithm, This shows that, until bus contention becomes noticeable, the speedup is nearly
linear, independent of the matrix size and bandwidth. This proved to be the case for all
matrices tested, provided the blocksize s was chosen appropriately,

A further check was made to determine whether the degradation was due to the implemen-
tation of the algorithm or to unavoidable contention among memory references over the
shared bus. To quantify the latter, the same parallel programming directives and library calls
were used to parallelize a matrix-matrix multiply operation on matrices of dimension 100 X 100
and 200 X 200. These are perfectly parallelizable operations and should show the maximum
possible speedup for the machine (without specific programming to maximize cache access
operations). In theory this should be linear. In practice, they showed almost identical dropoff,
as illustrated by the matrix multiply line in Fig. 1. We conclude therefore, that the implemen-
tation attains the maximum speedup possible on the Sequent, in the presence of bus
contention.

It is also to be noted that the time for the algorithm depends not only on the size and
bandwidth of the matrix, but also on the blocksize s chosen. In general, the larger the number
of processors the smaller the blocksize should be, although this is not a linear relationship, as
can be seen in Fig. 2(a), which gives the optimum blocksize for a matrix with # = 98304 and
bands = 3. The time varies considerably with the block size. This may be seen in Fig. 2(b),
which shows the time for a fixed matrix with r = 16384 and bands = 8, using different
blocksizes.

5. Conclusion

The method described does in fact achieve linear speedup as indicated by the tables and
figures in Section 4,

934

JJ. Buoni et al.

T L I 14 1 L) T

l L]) 1 b l 1 E 1

L 1 T 1

25~ s—a—o Blocksize 3072 1]

I Perfect Speedup , J

B et Iatrix Mualtiply . *

201 .

g 15 -

'c - anf

[} 5 .
Q

o = -

m - =

10]

5.]

ol L}

0 5 10 15 20 25

Processors
25 T T 1 Ll I i 1 i T E 1 T 1 13 l H 1] L] E) [T 1 1 ¥ ’I-’—-

[e a1

g—a--g Blocksize 1024
Perfect Speedup
Matrix Multiply

. |

s

!llllll]ll]lll;llll;l

Speedup

Dl!!llf!lll!!tli!illiIl‘l!;

0 5 10 15 20 25
Processors

Fig. 1. Speedup for matrices with (a) n = 98304, bands = 3 and (b) n = 16384, bands = 8.

In the tridiagonal case, the algorithm is not only better than existing algorithms in the
literature for LU decomposition, but also has better computational complexity for the
solution of a single tridiagonal system, as indicated in Table 2, where n' =n + 1 =72,

Algorithms for LI decomposition 935

5E4— Hr:, T 1 { LI] L) 1 ; E T T ¥ i i 3 T] I 1 13] i l §
agal N
© 3E4L _
™ b ~
‘D L }
4
[+ - .
o - .
m 2E4l- -
14 N
O - Lok PRl -+ g i . r
0 5 10 15 20 25
Processors
100 T I T] T 1 E 3 13 F ¥ i 1 E i ¥ l] T T T I
N a—a—o Blocksize 16384 i
B a-—a—a Blocksize 8192 i
i Blocksize 1024]
80| Blocksize 16 _
i Blocksize 8]
5 60 -
F3 - -
@ i
o A Z
@ L. 4
E 40~ -
[B i
20[- o]
0"“ P ST T Y TR | [ONC TN N X R ST ST | [T |]
0 5 10 15 20 25
Processors

Fig. 2. Optimum blocksize (top) and time (bottom).

In addition, comparing it with methods for solving equations, such as those which arise in
ADI [1, section 1}, which do not perform the decomposition but rather solve the n subprob-
lems anew at each iteration, a further improvement in computational efficiency results, since

936

IJ. Bueni et al.

Table 2
Complexity of the solution of a single linear system for tridiagonal matrices
Method Processors Tiane Speedup Efficiency
Serial Gaussian
elimination 1 8n - -
Recursive doubling n 1
[4] n 24 log n
llogn Jlogn
Odd-Even reduc- 81 16
tion {4} n'/2 Wlogn' 14 T —— —
19 1log n' —~14 191log n' —14
Odd-Even elimina- & 14
tion [4] n' 14log n'+1 R ——
14logn' +1 diogn'+1
Lakshmivarahan dn 3
Dhall [6] n/2 18log n
Ylog n Slog n
Lakshmivarah (n/pA25+9 log p /3]-3 8 i
akshmivarahan " og p /3]-:
in £ & [25+910g p/3]-3p/n [25+9%0g p/3]~3p/n
Phall |6} <p< T
Buoni, Farrell, 8 8
Ruttan [1 (n 47/2+61o 3} B
t ’ / PR/ I Yoy 477246 log p /3
n 8p 8
Improved 23— +7Tlog(p}—19 7 P
7 — - — —
algorithm 1<ps<n 23+(71og(p)—19) . 23+ (710g{p)—19) -

one need only perform the forward and back solves rather then performing the full elimina-
tion,

Although all the machines considered were of MIMD shared memory type the algorithm
could, in fact, be executed, achieving the same linear speedup on a SIMD shared memory
processor if such existed, since the algorithm can easily be reformulated so that each
processor performs the same operations, with access to the shared data structure indexed by
the group (partition) related to each processor.

References

[1} J. Buoni, P.A. Farrell and A, Ruttan, Parallel LU decomposition of Upper Hessenberg Matrices, in: C. Brezinski
and U. Kulisch, eds., Comput. & Appl. Math. I - Algor. & Theor (1992) §1-70

[2] S.C. Chen, D.J. Kuck and A.H. Sameh, Practicat parallel band triangular system solvers, ACM TOMS 4(3) (1978}
270--277.

[3] D.B. Gannon and J. van Rosendall, On the impact of communication complexity on the design of parallel
numerical algorithms, JEEE Trans. Comput. 33 (1984} 11801194,

[4] R.W. Hockney and C.R. Jesshope, Parailel Computers 2 - Architecture, Programming and Algorithms (Hilger,
Bristol, 1988).

{5] S.L. Johnsson, Solving tridiagonal systems on ensemble architectures, SIAM 1 Sei Star. Comput. 8 (1987)
354392,

[6] S. Lakshmivarahan and S.K. Dhall, A new class of paraliel algorithms for solving tridiagonal systems, [EEE Fall
Joint Computer Conf. (1986) 315-324,

[7] G.W. Stewart, Introduction to Matrix Computation (Academic Press, New York, 1973) 441.

[8] H.5. Stone, An efficient parallel algorithm for the solution of a tridiagonal system of equations, J ACM 20
(1973) 27-38.

Algorithms for LU decomposition 937

[9] H.5. Stoae, Parallel tridiagonal equation solvers, ACM Trans. Software 1 {1975) 289-307.
[10] H.A. van de Vorst, Large tridiagonai and block tridiagonal linear systems on vector and parallel computers,
Parallel Compur. 5 (1987) 45-54.
[11] H.A. van der Vorst, Analysis of a parallel solution methed for tridiagonal systems, Parallel Comput, 5 (1987)
303-311.
{12] HLH. Wang, A parallel method for tridiagonal equations, ACM Trans. Math. Software 7 (1981) 170-183.

