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CONTINUOUS AND NUMERICAL ANALYSIS OF A
MULTIPLE BOUNDARY TURNING POINT PROBLEM*

RELJA VULANOVIC! AND PAUL A. FARRELL?

Abstract. A singularly perturbed boundary-value problem with a multiple turning point at a
boundary is considered. A representation of the solution is given, and it is used in the construction of
a uniform finite-difference scheme. The scheme is a first~order exponentially fitted one. An improved

modification on a special discretization mesh is given.

Key words. boundary-value problem, singular perturbation, turning point, finite-difference
scheme, exponential fitting

AMS subject classificatjons. 34E19, 85L10

1. Introduction. Let us consider the following singularly perturbed two-point
boundary-value problems:

PEls, 1] : —eu” + z*b(x) + o(z)u = flzy, T € s, 1], wu(s) and u(1) given,
with a small positive parameter €& keEN, s=0o0rs=—1, and
ba) >0, c(z)20, zelsl).

Since the coefficient of the first derivative vanishes at x = 0 and at that point only,
these problems have an isolated turning point at z = 0. The problems P,f[s, 1] contain
all possible cases modeling turning point behaviour. When s = 0 the turning point is
at the boundary and we call it & boundary turning point. For s = —1 we have interior
turning points. If k = 1, the turning point is simple, and if & > 2, it is called & muitiple
turning point {not only z*b(x) but its first derivative as well vanishes at x = 0), In
the plus-sign case it is called a repulsive turning point, and in the minus-sign case it
is called an attractive turning point.

Simple turning point problems have attracted the most attention of all turning
point problems, both analytically and numerically. Pji-1, 1] (with e(z) > 0, z ¢
[~1,1]) is considered in [2]. The numerical method applied there is a (modified) £l-
Mistikawy-Werle scheme. The result from [2] for P {—1,1] is improved on in 6] by
using a scheme involving parabolic cylinder functions. The same problem is consid-
ered in [5], where sufficient conditions for the uniform convergence (i.e., convergence
uniform in € of the numerical solution to the exact solution) are investigated, All of
these papers are based on continuous analysis of the problems, and they use equidis-
tant discretization meshes. The other approach, discretization on special nonequidis-
tant meshes, also requires analysis of the continuous problem. It is used in [12] and
[18] in the case of P;7[0,1], but the method can be extended to Py [~1,1] as well.

On the other hand, there are few results in the literature on multiple furning
point problems. Examples are [8] and [13], both of which deal with s general turning
point problem. In (8] the asymptotics of a homogeneous problem are investigated,
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and in [13] a numerical method based on special discretization meshes is given for a
semilinear problem. In the case of linear problems the main assumption from [13] is
that c¢{z) > 0 on the whole interval considered.

Singular perturbation problems with turning points arise as mathematical models
for various physical phenomena. The problems with interior turning points represent
one-dimensional versions of stationary convection-diffusion problems with a dominant
convective term and a speed field that changes its sign in the catchbasin. Boundary
turning point problems, on the other hand, arise in geophysics [9] and in modeling
thermal boundary layers in laminar flow [14, Chap. 12]. The problem from [9] models
heat flow and mass transport near an oceanic rise. I is a single boundary turning
point problem becaunse of the assumption that the velocity distribution is linear. If
one allows for higher orders of velocity distribution, then the boundary turning point
becomes multiple. The problems from [14] are multiple (second-order) boundary
turning point problems.

In this paper we shall give a continuous and numerical analysis of the attractive
multiple boundary turning point, P [0, 1], k > 2. We consider the problem

(1.1a) Lu = —eu” — z¥b(a)u’ + e(z)u = f(z), zel=[0,1],
(1.1b) Bu = (u(0), u(l)) = (Uo, 1h),

where U and Uy are given numbers, 0 < ¢ < ¢* < 1, and

(1.2a) k=2 or kel[3 +o0),
(1.2b) be, f € C3(1),
{1.2¢) b{r) > b. > 0, zel,
{1.2d) e{x) > 0, zel,
(1.2¢) c(0) > 0.

Note that here k is not necessarily an integer—it is sufficient to assume (1.2a) because
what we require is that a € C*(I), where

a(z) 1= z*b(x).

In §2 we shall show that problem (1.1) has a unique solution 4, € C®(I) bounded
uniformly in €. We shall give estimates of the derivatives of u. by using a technique
that is similar to that in {13]. However, our estimates are somewhat different and our
assumptions (1.2d), (1.2e) on ¢(z) are weaker. Moreover, we shall combine the esti-
mates with techniques from [10] and obtain the following, more precise representation
of the solution, which is required for the numerical error estimates:

(1.3a) Ue() = woe{x) + z.{x), xel,

(13b) wiw) =ep(-na),  u= "L i< m,

(1.3¢c) 282 < M(I + eli—i/2 exp(ﬁmm/\/z)), i=0,1,2,3, zel,

where m and M are positive constants independent of ¢. This representation shows
that u, has an O(y/€) boundary layer at = = 0. Thus the layer is similar to that
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of the selfadjoint problem (b{z) = 0, c{z) > 0, z € I), [4, Chap. 6], [16], [17], as
opposed to the boundary layers in the nonselfadjoint nonturning point or repulsive
interior turning point problems. However, the solution to the selfadjoint problem
has two boundary layers and here we have one layer only, because the solution ug of
the reduced problem, being that of a first-order differential equation, can satisfy the
right-hand boundary condition

—a(z)uy + e{x)uy = flz), zel, wup(l)=1U.

Such behaviour of u, might be expected from the asymptotic treatment in [11, p. 65]
of the model problem of type (1.1).

In §3 we shall give a first-order uniform finite-difference scheme for problem (1.1).
The scheme is an exponentially fitted one with a fitting factor that is, naturally, of &
form similar to that of the selfadjoint problem {4, Chap. 6], [16], [17]. An arbitrary
discretization mesh will be used. In the case of selfadjoint probiems the fitted scheme
is improved when a special discretization mesh that is dense in the layers is used
[17]. Here we shall show that this is not the case for {1.1). This is due to the
upwind discretization of the first-derivative term, which has the same accuracy on
any mesh. Still, we are interested in improving the first-order scheme by using a
special mesh. One possibility is to apply the second-order scheme from [19] (see
[18] as weil). However, to prove second-order uniform convergence we would need
stronger smoothness assumptions; thus (1.2a) and (1.2b) should be changed to &k &
{2,3}U [4, +00) and b,¢c, f € CYI), respectively. To avoid this we choose another
approach—we modify the first-order scheme and obtain the error

O(ven™ +n72)

on a special mesh with n mesh steps. This is the result of §4. Obviously, the modified
scheme has second-order accuracy as long as /€ <n™!, and it gives an improvement
{on the special mesh only) over the standard fitted scheme.

Both schemes will be investigated by the following well-known principle:

uniform stability + uniform consistency = uniform convergence.

Uniform stability will be proved by using M-matrix theory [15]. As for the uniform
consistency, it will follow simply for the first-order scheme, whereas for the improved
scheme a technique similar to that in [19] will be used. We shali give numerical results
for the schemes in §§3 and 4.

‘To summarize, the main purpose of this paper is to show that certain numerical
methods, designed for particular singular perturbation problerus, can be extended to
new types of problems that are of interest in the modeling of physical processes. In
this paper we focus on problems with a mmitiple boundary turning point of the at-
tractive type, whereas other types of multiple turning point problems are considered
in [20]. The numerical methods examined are exponential fitting and a priori mesh
construction. Another purpose of the paper is to draw attention to these mesh con-
struction techniques, which were considered as early as 1969 in [1] but which have not
received significant exposure in the English-language literature. The discretization
mesh is generated a priori by some suitable function. The mesh-generating function
automatically redistributes mesh points as ¢ changes, keeping the same percentage of
them in the layer. In order to construct such a function, the behaviour of the con-
tinuous solution must be known. This is a shortcoming of the method in cormparison
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t0 a posteriorl mesh-generation techniques. However, an advantage is that for all
values of € the same number of mesh points is needed in order to preserve the same
accuracy. This is not so with other mesh-generation methods, such as that described
in [3]. Thus, rigorously speaking, these methods are not uniform in e in the sense we
describe here. Pinally, our intention here is to show that a combination of exponential
fitting and special discretization meshes can improve numerical results significantly.
One must remark, however, that a priori methods have certain limitations. In
particular, exponential fitting can be applied only to problems for which the leading.
order term in the asymptotic expansion is known. This is not always the case for more
complicated nonlinear problems. However, a possible application of our approach to
nonlinear problems arises when a linearization technique is used and a sequence of
linear problems is obtained. Our approach con then be applied to each of the linear
problems in turn. On the other hand, a priori methods have noticeable advantages
over a posteriori methods when implementation on parallel computers is considered,
This is because the adaption process inherent in a posteriori methods introduces
sequentiality to the solution process, which is absent in the a priori case.

2. Continuous analysis. Recall that a(x) = z*b(z). By M we shall denote any
positive constant independent of . Some of these constants will, however, be denoted
by My, M1, etc.

LEMMA 2.1. Problem (1.1} has o unique solution u, that is bounded uniformily in
[

(2.1) luc(e)l <M,  zel

Proof. Because of (1.2d) the operator (L, B) is inverse monotone, and existence
and uniqueness follow easily. From (1.2e) it follows that there exists a number 8 €
(0,1) independent of € such that

dx}z e >0 forzel0dl.

Letting
p(z) = Mo(2 - z),
we have
Lp(z) = a(z) Mo + c{z)p(z)

and

Lp(z) > e, My for z € (0,6},

Lp(z) = 6Fb, My for z € 18, 1].
Let

F = max|f()l,

and choose My sufficiently large that

e My > F, 656, My > F,
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and
2My = |Usl, My = U]
Thus we get
Lp(z) > +Lu.(z), xel,
Bp > £Bu, {componentwise),
and by inverse monotonicity we obtain (2.1). a0

Next, let g.(x} € C3(I) be a function such that

9 (2)] < M(1+ e/ exp(—paz)), i=0,1,2,3, z€l, p,= \/—%:-
Then according to Lemma 2.1 the problem
Lu(x) = g(z), zel, Bu = (Up, Uy)
has a unique solution y, and
we(z)| <M, =zel.
Now let us define ¢;(z) by
gi(x) = ¢(z) — id(z), 1=1,2,3.

Since

¢:(0) = ¢(0) > 0, i=1,2,3,
there exists a point 8y € (0, 1), independent of €, such that
{2.2) gi(z) > g > 0, ze 0,6, i=1,23

LeEMMA 2.2. There exist points 0; & (0,6), i = 1,2, 3, independent of ¢ and such
thaot

(2.3) WP <M, =123
On the other hand,

(2.4) WO < M2 i=1,2;3.
Proof. Let 8; be a point such that
1
y(61) = “9“(;(96(90) — 1{0)), 61 € (0,60).

Then (2.3) is obvious for i = 1. Similarly, we choose 8y from (0, 6;) so that

0£10) = 657 |0y =20 () 0]
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and #3 can be found analogously.
Now let us prove (2.4) for ¢ = 1. Rewrite the differential equation in the form

—eyl (z) — (a(z)ye())’ + (@' (@) + c(2)pe(z) = ge(),

and integrate from zero to the point x* such that

(o = EVLBO e 0,08

It follows that

l(0) = esl(a”) + () + [ o= (& + o)
and, since from the definition of z*
lye(2")l < Me™172,
on division by € we obtain
lye ()] < M(e7 /2R304 e 1el/2) < M2,

Then (2.4) follows for ¢ = 2, from Ly.(z) = g.(z) at = = 0, and for ¢ = 3 after
differentiation. O
LEMMA 2.3. Forz € I we have

(2.5) (@) € M1+ e exp(—pz)),  i=1,2,3.

Proof. Let us introduce the operators
Liu = Lu —id'(z)u = —eu” — al2)u’ + ¢;(x)u, i=1,2,3.

Because of {2.2) these operators are inverse monotone on [0, 6;}. We shall use inverse
monotonicity of L; on [0,8;], i=1,2,3, where §; are the same as in Lemma 2.2. Let
p; be the following barrier functions:

pi(z) = Mi(L + 2 exp(—p,z)), i=1,2,3.

It is easy to show (cf. [13]) that

(2.6)  Lips(a) = Mifgi(e) + € % (gi(z) — gu) exp(~pz)],  i=1,2,3, zel,
and
{2.7) + Lyt () < M(l 4 e H/2 exp(—u*m)) , i=1,23, ze€l.

For instance, since

Ly(z) = (g~ ye)(2),

we obtain (2.7) for ¢ = 1.
From (2.6} and {2.7) we can conclude that M;, i=1,2,3, can be chosen so that

Lz-pi{a:) > :f::Llygt)(iL‘), €T & [0, 93], i == 1,2, 3,
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and
pilz) = £y (z), ze{0,8}, i=12,3.
Then by inverse monotonicity (2.5) follows for ¢ & [0,6.], where
0. = min{f;,8;,04}.
It remains to prove the results on [6,, 1], that is,
(2.8) W@ <M,  i=1,23, zcld,,1]

First we prove (2.8) for i = 1. Let

pla) = / ) tRb{)dt.

El

Then we have

~e(e7 Y (1)) = (ge — ey )(z)e? @/

and
/ 1 [* e gs 1 o —pla)/e
Ve = |7 [ e = a) e <dt 1 4/ (0.)] e
Since
lye(6.)] < M,
it follows that
(2.9) [yiz)| < M (1 + l/ e(w(t)-—so(z))/sdt) ’ z € B, 1].
€ Jo,
Now from
fk+1 . .’L‘k+1 b* i
- < b, £
Plt) = (@) < b € g )

and (2.9) we obtain (2.8) for i = 1.
Similarly, after differentiating Ly.(z) = g.(z) once and expressing /() by means
of integration, we obtain (2.8) for i = 2. In this proof we use

@) =M,  lel@) <M, zeld,1l

The proof for i = 3 is analogous. O
THEOREM 2.4. The solution u. to problem (1.1) has the following representation:

ue{T}) = wu (x) + z.(z), zel,
wiw) =ow(-pe), =L wi<m,

|20 (@) < M (1 + 1072 exp(wmw/\/"é)) . 1=0,1,23, zel,
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where m = /g,
Proof. Let the constant w be determined by the condition

(2.10a) z(0) = 0.
Then |w| < M follows because from Lemma 2.2 we have
i 0)] < Me™ 12,
Thus we obtain (1.3¢c} for ¢ = 0. Also, it is obvious that
(2.1up) lze (1)} < M.
Furthermore,
Lzl{z) = s(z), =xel,
where
se(z) = f'(@) - wLve(@))' + o (@)zl(z) - ¢ (x)ze(z).
If we show that
(2.11) (s (x)] < M(1 4 &¥/2 exp(— 1)), i=0,1,2 =zl
then by (2.10) and Lemma 2.3 we obtain
GOV @) < MU+ P exp(~paa),  i=0,12, zel,

which is {1.3¢}, for i = 1,2, 3,
To illustrate the proof of (2.11) let us consider the case i = 0. We have

(Loe(2)) = [¢(z) + a'(2)p —~ plc(z) — e(0) + afz)p)]ve ().
Then, since
ez} —c0) =xc'(n), ne(0x),
we obtain
(Loc(z))| < M{1+ 25 e V2 4 2e V2 4 PV (2) < M.
Similazly,
o/ {z)zc(@)] < Ma* " (|ul ()] + [ol(z)]) < M.

Finally, it is obvious that the remaining terms of s.(z) are uniformly bounded. The
proof of (2.11) for i = 1,2 is analogous {cf. [10]). Note that we use the condition

c(0) > g.

when dealing with v.. O
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and
pi(z) > =y (a), ze{0,6;}, i=1,23.
Then by inverse monotonicity (2.5) follows for z € [0,86.], where
6. = min{fy, 0,63},
It remains to prove the results on [6,, 1], that is,
(2.8) (@) <M, i=1,2,3, zel, 1]

First we prove (2.8) for i = 1. Let

wlx) = /: t*b(t)dt.

®

Then we have

—e(e# VY () = (ge — cye) (w)e?@/e

and
1 T
yé(-’ﬂ) = {Z/ (C?€ - ge)(t)ego(t)/edt -+ yé{e*}J e'@(z)/f_
[
Since
(8.1 < M,
it follows that
(2.9) lelz) < M (z + %f e(w(t)w(z))/edt) . zeli]
2.
Now from
ol el b

oF(t — x)

- < <
wlt) - plz) < b E+1 “k+1

and (2.9) we obtain (2.8) for ¢ = 1.
Similarly, after differentiating Ly.(z) = ge(z) once and expressing yZ (x) by means
of integration, we obtain (2.8} for ¢ = 2. In this proof we use

@) < M, gl < M, zelh,1).

The proof for ¢ = 3 is analogous. N
THEOREM 2.4. The solution u, to problem (1.1) has the following representation:

u () = wo{z) + z.{x), xel,
ve(z) = exp{—pz), p= T lw| < M,

|20 (2)] < M (1 + ¢ti=1)/2 exp(~mm/\/é)) , i=0,1,2,3, zel,
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where m = ,/G,.
Proof. Let the constant w be determined by the condition

(2.10a) 2L(0) = 0.

Then |w| < M follows because from Lemma 2.2 we have
[uc(0)] < MemV/2,

Thus we obtain {1.3c) for i = 0. Also, it is obvious that

(2.1up) iz (1)) < M.

Furthermore,

where
se(2) = fl(z) = w(Lve(2)) + d' (w)ze(e) - ¢ (2)ze(w).
If we show that
(2.11) W (@) < M1+ €2 exp(—paz)), i=0,1,2, ze€l,
then by (2.10} and Lemma 2.3 we obtain
(Z) P (@) < M{1+ e exp(—pa2)), i=0,1,2, zel,

which is (1.3¢), fori=1,2,3.
To illustrate the proof of (2.11) let us consider the case ¢ = 0. We have

(Loe(@)) = [d'(z) + o’ (@) ~ p(e(z) — (0) + a(@) e (2).

Then, since
cz)—c(0) =zd(n), ne(ba),
we obtain
HIZve{z))| < M(1 4+ 25 2e™ 12 p e /2 Fe N lz) < M.
Similarly,

o' (2)2i(2)] < Ma™ " (Jug (@) + ol (2)]) < M.

Finally, it is obvious that the remaining terms of s.(z) are uniformly bounded. The
proof of (2.11} for i = 1,2 is analogous {cf. [10]}. Note that we use the condition

c(0) > q.

when dealing with v,. 0
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and
pilx) = 2y (z),  ze{0,6}, i=1,23.
‘Then by inverse monotonicity (2.5) follows for € [0,6.], where
6. = min{By,8,,63}.
It remains to prove the results on {8,, 1], that is,
(2.8) Wiz <M,  i=1,23, zclb.,1l.

First we prove (2.8) for i = 1. Let

elz) = /z t*b(t)dt.

*

Then we have

~e(e? ey (2)) = (ge ~ cye)(z)er @/

and
@)= 1 [ e = a0 at o) evtore,
&,
Since
lye(8.)] < M,
it follows that
I x
(2.9) ly! ()| < M (1 + “gf e(""(t)”“’(”))/“'dt) ,  relf, 1.
B,
Now from
tk+l . .’,UIH_]'

be
< —
i1 ShEato

¢(t) - ¢(z) < b

and (2.9) we obtain (2.8) for i = 1.
Similarly, after differentiating Ly.(x) = g.(z) once and expressing 3/’ (z) by means
of integration, we obtain (2.8) for ¢ = 2. In this proof we use

W@l <M, |g(e)l <M, =zeb,1l

The proof for 7 = 3 is analogous. 0
THEOREM 2.4. The solution u, to problem (1.1) has the following representation:

ue(x) = wve(T) + 2elz), €,

wio) =ep(pr),  w= 20 i<,

izé*')(w)iSM(ue(l—iWexp{-mw/«/E)), i=0,1,2,3, zel,
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where m = /Gy,
Proof. Let the constant w be determined by the condition

(2.10a) 2L(0) = 0.

Then lw| < M follows because from Lemma 2.2 we have

u(0)] < M2,

Thus we obtain (1.3¢) for i = 0. Also, it is obvious that
(2.1ub) |2£(1)} < M.

Furthermore,

Ll(z) =s{x), =zel,
where
se() = f'(2) — w(Lve(x)) + o' (2)2(x) ~ (@) 2e().
If we show that
(2.11) (s (2)} < M(1 + €% exp(— ), i=0,1,2 =zel,
then by (2.10) and Lemma 2.3 we obtain
(208 ()] < M1+ 2 exp(~pa2)), i=0,12 =zel,

which is (1.3¢), for i = 1,2, 3.
To iliustrate the proof of {2.11) let us consider the case 1 = 0. We have

(Loe(@)) = {&(2) + @' (@)p — plc(z) — (0) + a(@)u)]ve(z).

Then, since

(@)~ e0) =xc(n), ne(0a)

we obtain

[(Lve{@))'] < M1+ 2" e V2 4 2e= /2 4 ghe Ny (2) < M.
Similarty,
lo/(2)zc(@)] < Ma*~ (jug(@)] + [l (2)]) < M.

Finally, it is obvious that the remaining terms of s.(z) are uniformly bounded. The
proof of (2.11) for ¢ = 1,2 is analogous (cf. [10]}. Note that we use the condition

c(0) > g.

when dealing with .. 0
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3. First-order scheme. Let I" be an arbitrary discretization mesh with mesh
points

O=xy <1 < - <y =1, n € N\{1}.

Let

In this and the next sections the constants M will be independent of /" as well.
By w", u”, etc., we shall denote mesh functions on I*. They will be identified
with R**! vectors:

T (w; == wh).

wh = [wo, Wi, .« Wy]
Let
] = max |w;.
0<i<n

The corresponding matrix norm will also be denoted by | - ||.
Let us introduce the following finite-difference operators:

D"y = 2[(wigr — wi}/hipr + (wiiy — wi} R}/ (hy + higy),

D'w; = {(wir1 — wi)/hit1,
and let
2
oy = %m(ht- + i Yhifiga [ha(e ™Rt - 1) o gy (47 — 1)L

Then the discrete problem corresponding to {1.1) is given by

(3.1&) Wp = UQ,
(3.1b)  Lrw; = —eoiD"w; — ala) D'w; + cla)w; = fl:), i=1(1)n -1,
{3.1c) wy, = U1,

where o; is a fitting factor similar to that used in [16], [17] and, in the equidistant
case, in {4, Chap. 6]. It is derived from

(3.2) o D" (w) = v (=),

where v, (z) is the boundary-layer function from {1.3b).
Let 7" be the consistency error:

o= Lruc(ay) — flag), i=1{1n—1,
rg =Ty = 0.

Then we have the following lemma.
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LEMMA 3.1. For the difference scheme (3.1} we have

™| < Mh.
Proof. For i = 1{1)n — 1 we have
Iril < P+ @,
where
P, = ejo; D"uc(;) — ull (i),
Qi = a(ze)|D'uc(ws;) ~ u(z:)l.

Then, for some oy € {m;, 2;41)
1
Qi < Mafhlul{ey)! < Mha* (1 + ;e““*““) < Mh.
Furthermore, by using the representation (1.3} and {3.2) we obtain

F; = elo; D"z {zy) ~ 20 ()]
< el{oi — 1) D" ze(23)| + €| D" 2 () — 22 ()]
eloy — |20 (B}l + Meh|2! (i),

A

where 8;, % € (i—1, %i41). Thus,

P, < M[Velo; — 1| + h] < Mh

since

(3.3) \/E[O’z s 1; < Mmax(hi,hHl)

(cf. [16}). It follows that
|ri < Mh O
Let u” be the restriction of the exact solution on the mesh I™:
ul = fu(zo), ue(z1), ... e (2 1T
THEOREM 3.2. The discrete problem (3.1) has a unique solution w? that satisfies

(3.4) fuf —wl|| < Mh.

Proof. Rewrite (3.1} in the matrix form
Aw® = dh,

where do = Up, d;y = f(x;}, i = L{1)n — 1, dy == Uy, and A is the corresponding
tridiagonal matrix, A = [a;;] € R**1"+1 1t is easy to show that

a; >0
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(cf. [16]) and that A is an L-matrix {a;; > 0, ai; <0, i34, 4,7 =0(1)n). Let "
be the vector with the components

e mzmwi, 2=0(1)ﬂ

Then
Aeh:vh,
90327
vi = axg) + o(x;)(2 ~ 2;), i=1{1)n—1,
Yy == 1.

In & manner similar to the proof of Lemma 2.1 we can show that there exists a positive
constant myg, independent of € and I*, such that

v; = myg, i=0(1)n.

It follows (cf. [18]} that A is an inverse monotone matrix {A is nonsingular and
A7l > 0, componentwise) that is an M-matrix (inverse monotone L-matrix; see
[15]). Thus wh exists uniquely. Moreover, it holds that

a2

which means that the discrete problem (3.1) is stable uniformly in ¢. Hence we have

2
fulf — wh| < %[!Thlf,

and (3.4) follows from Lemma 3.1. f
We shall now confirm the theoretical results by some numerical results, We shall
consider two test problems. The first one is

(3.5) — e’ — afu' +u = f(z), u{0} =2, u(l)~e,
with the exact solution
ug () = e~ T/VE 1 e,

from which we determine f{z). The second one, for which we do not have a closed
form of the exact solution, is

(3.6) —eu” ~ 2P + (3 - x)u = o, u{0} = u(1) = 0.

We calculate the rate of uniform convergence on equidistant meshes for problems
with k == 2 and & = 3. Tables 3.1-3.4 present rates of convergence calculated for a
range of values of i and € given by

H:{%jsjm&...,g}, E:{%jfjm{),...,jred},

where jred is chosen so that ¢ is a value at which the rate of convergence stabilizes,
which normally occurs when, to machine accuracy, we are sotving the reduced problem.
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The final column in each table gives the average rate of convergence for that value of
¢. The last row gives the uniform rate of convergence for each h, that is,

p" = [In(¢*") - In(e")}/ In(2),
where

ho_ 2h _ b
e* = max( max |u; ug; ).

The figure in the lower-right-hand corner is an estimate of the overall rate of uniform
convergerce

h
p= meanpey P

For more details of these tests see [4], [5], and [7]. As can be seen from Tables 3.1-3.4,
the scheme is uniformly convergent of order approximately one.

TasLE 3.1
Experimental order of uniform convergence for problem (3.5) with k = 2.

n
€ 8 16 32 64 128 256 | Average
1/2 1 0.95 €698 099 099 100 100 .98
1/4 | 0,90 0695 097 099 098 100 0.97
1/8 | 0.86 092 096 098 0.99 100 0.65
1/16 | 0.80 091 095 098 099 0.99 0.94
1/32 | 0.80 090 095 097 089 0.69 0.93
1/64 | 0.80 090 095 057 0699 099 0.93
/128 | 0.81 0.90 085 097 099 059 0.94
1/256 | 0.83 0.90 095 097 099 099 0.94
1/512 | 0.84 090 095 097 099 089 0.94
1/1024 | 6.85 0.90 095 0.97 089 0.99 0.94
1/2048 | 0.86 09t 095 097 099 0.99 0.95
1/4096 | 0.86 0.9t 095 097 099 0.99 8.95
1/8192 | 0.86 (.92 096 098 089 099 0.95
1/16384 | 0.85 092 096 098 093 0.99 .95
1/32768 | 0.85 092 096 098 099 0.99 0.95
Aggregate | 0.80 0.80 095 097 099 .59 0.93

Next we shall use a special nonequidistant mesh that is dense near the origin.
The mesh poinis are given by

(3.7a) x; = Alts), t; = i/n, i=0(1)n,
(3.7b)
Ay = ) PO i=VES,  teDal,
(1) =5t~ o) + L2t — o) + (@)t —a) + ¥(a),  telal],
where

v =oa-+ \s/g’
o is an arbitrary number from (0,1), and J is determined by

(1) = 1.
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TABLE 3.2
Experimental order of uniform convergence for problem (3.5) with k= 3,

n
€ 8 i6 32 64 128 256 | Average
1/2 | 092 098 099 100 100 1.00 0.98
/4 1 086 095 098 099 099 1.00 0.96
1/8 | 082 092 09 098 095 099 0.94
i/16 | 0.80 0.89 095 0.97 099 0.99 0.93
1/32 | 0.78  0.88 (.94 097 0.98 0.09 0.92
1/64 | 0.75 087 094 097 0.98 009 0.92
1/128 | 073 088 0.94 097 0988 099 0.91
1/256 | 0.73 0.88 094 0.97 098 099 0.92
1/5812 | 0.75 0.88 0.84 097 098 0.09 0.92
1/1024 | 077 089 0.94 0.97 098 009 0.92
1/2048 | 0.78 ©0.89 0.94 097 098 099 0.93
1/4006 | 079 090 094 097 088 0.99 0.93
1/8182 | 0.78 0.90 095 097 088 0.99 0.93
1/16384 § 0.78 090 085 097 099 099 0.93
1/32768 | 0.8 090 095 097 099 099 0.93
Aggregate | .78 0.90 095 0.7 099 0.99 0.93

TaBLE 3.3
Experimental order of uniform convergence for problem (3.6) with k = 2.

n
€ 8 16 32 64 128 256 | Average
1/2 1 G686 0.90 695 0898 0.08 009 0.94
1/4 1 070 0.87 (.94 097 098 0.99 0.91
1/8 + D67 084 092 096 098 099 0.89
1/16 | 061 083 092 096 098 0.99 0.88
1/32 | 644 074 0.89 094 097 099 0.83
1/64 | 070 0.87 092 096 098 0.99 0.91
1/128 | 0.84 0.8 0.92 096 098 0.99 .93
1/256 | 0.84 088 0.93 096 098 099 0.93
1/512 1 0.84 088 0.93 0.96 098 0990 0.93
171024 | 077 087 094 096 098 0.99 0.92
1/2048 | 0.8 092 095 095 091 096 0.93
1/4006 | 0.94 0.94 095 0.82 090 0.95 0.92
1/8192 1 0.7 0.93 091 0.79 0.8 0.04 0.91
1/16384 | 0.99 092 091 0.77 0.87 0.94 0.90
1/32768 | 099 092 088 074 0.87 093 0.89
1/65536 | 099 0.92 0.8% 071 087 (.93 (.88
1/131072 | 0.99 0.92 077 4.3 0.87 083 0.87
1/262144 | 0.99 086 076 0.79 0.86 0.03 0.87
1/524288 | 0.99 081 0.74 0.83 (.87 0.93 0.86
1/1048576 | .99 0.80 6.7 0.85 (.88 094 0.86
1/2087152 | 0.99 0.80 0.0 0.85 0.90 0.94 0.86
1/4194304 | 0.99 0.80 069 0.84 091 0.95 .86
1/8388608 | 0.99 0.80 0.69 0.83 091 095 0.86
1/16777216 | 0.99 0.80 0.69 082 091 0.96 0.86
1/33554432 | 0.99 0.80 069 082 090 088 0.86
Aggregate | 099 G6.80¢ 0.60 ©0.82 0.90 0.96 0.86

The main part of A is the function v, which gives the mesh points in the layer.
Essentlally, ¢ is a medification of the inverse of the boundary-layer function v,.. On
the rest of the interval ¢ is extended by a polynomial so that A € C*(I). Moreover,
A is strictly monotone.

Let us mention that meshes of similar types were used in [12], [13], [17], and [19].
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TABLE 3.4
Ezxperimental order of uniform convergence for problem (3.6) with k = 3.

n
€ 8 16 32 64 128 256 | Average
1/2 {1 0.68 0.86 093 097 098 099 0.90
1/4 | 0.58 0.82 091 0.9 088 099 0.87
1/8 | 0.46 076 0.89 0.95 0987 099 0.84
1/16 | 620 071 087 084 0987 0.99 0.78
1/32 | 075 0.83 092 095 098 099 0.90
1/64 | 0.83 088 084 097 098 (.99 0.93
1/128 | 0.87 087 0.84 0497 098 099 0.94
1/256 | 0.87 0.87 0:.84 096 098 099 0.94
1/512 | 0.89 086 084 097 098 099 0.94
1/1024 | 091 092 093 096 098 0.99 0.95
1/2048 | 0.94 085 093 096 098 099 0.94
1/4006 | 0.79 092 095 096 098 (.99 0.93
1/8192 | 0.72 0.96 094 097 093 (.99 0.93
1/16384 1 .70 094 096 098 099 099 0.93
1/32768 | 0.6 0.93 097 098 099 1.00 0.93
1/65536 | 0.69 0.93 097 088 057 093 0.91
1/131072 | 0.6 0.92 098 098 0.9 0.94 .90
1/262144 | 069 092 098 097 0838 094 0.90
1/524288 (.69 092 0.8 094 088 094 0.89
1/1048576 | 0.69 092 098 0692 080 084 0.89
1/2097152 | 0.69 0.92 098 0.9 082 095 0.89
1/4194304 | 0.69 0.92 098 (.88 0683 095 0.89
1/8388608 | 0.69 0.92 098 087 083 096 0.89
1/16777216 | 0.69 092 098 086 093 0.96 0.89
1/33554432 | 069 092 098 0.86 0982 097 0.89
Aggregate | .69 092 098 086 092 0497 0.89

It can be proved that the upwind scheme (scheme (3.1) with o replaced by 1) on
the mesh (3.7) has first-order uniform convergence. Therefore, the question arises as
to whether the fitted scheme (3.1} on the mesh (3.7) gives better results than the
upwind scheme. The answer is no, as the results of Table 3.5 show: obviously, first-
order uniform convergence is present, and the results are practically the same as the
results of the upwind scheme. The reason for this is that both schemes use the same
first-order discretization of the a{z)u'-term.

TABLE 3.5

Error |fjult — wh|| for problem (3.5) with k = 2; scheme (3.1) on the mesh (3.7) with o = %

€
n 1076 1o~ 08
50 | 3.10.2 3.65-2 B3.70-2
100 | 1.55-2  1.83.2  1.86-2
200 | 7.78-3  8.11-3  9.31-3

The choice o = 1 gives about 25% of the total of mesh steps in the interval {0, \/€]
representing the layer. The percentage can be higher if a greater value of « is used.

4. Improved scheme. We would now like to improve scheme (3.1) on the spe-
cial mesh (3.7). We modify (3.1) to obtain a discretization of problem (1.1) at the
midpoints

h.;
Tip1/2 -+ T; -+ 1;1, g = 1(1)?’1 — 1.
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TapLe 3.2
Eazperimental order of uniform convergence for problem (3.5} with k = 3.

n
€ 8 18 32 64 128 256 | Average
1/2 1092 098 099 100 100 1.00 0.98
/4| 086 095 098 089 099 100 0.96
/8 1 082 092 096 098 089 099 0.94
1/16 | 0.80 0.8 095 007 099 099 0.93
1/32 { 0.78 0.88 084 097 098 099 0.92
1/64 | 075 087 6.94 097 098 (.99 0.92
1/128 | 073 0.88 094 097 098 0.99 0.91
1/256 | 0.73 0.88 094 097 098 (.99 .92
1/512 | 0.75 088 0.94 097 098 0.99 0.92
1/1024 | 0.77 0.89 094 .97 098 099 0.92
1/2048 | 0.78 0.8 094 097 098 0.99 0.93
1/40086 { 0.79 080 0.94 087 098 (.99 0.93
1/8192 | 0.78 090 095 097 098 0.09 0.93
1/16384 : 0.78 090 095 097 059 099 0.93
1/32768 | 0.78 080 095 097 099 0.99 0.93
Aggregate | 0.78 090 0.85 097 .09 0.99 0.93

TasLy 3.3
Ezperimental order of uniform convergence for problem {3.6) with k = 2.

n
€ 8 16 32 64 128 256 | Average
1/2 1 0.80 090 0.5 098 069 0.99 0.94
1/4 1 070 087 094 097 098 0.99 .91
1/8 | 0.67 084 092 09 098 0.99 0.89
1/16 | 0.61 0.83 092 059 098 0.99 0.88
1/32 1 044 074 089 094 097 0.99 0.83
1/64 | 0.70 087 092 096 098 0.99 0.91
/128 | 0.84 086 092 09 098 0.99 04.93
1/256 | 0.84 0.88 093 09 098 0.99 .93
1/512 | 0.84 0.88 093 096 098 (.99 .93
1/1024 | 0.77 0.87 094 (.96 098 0.99 0.92
1/2048 | 0.89 D.92 085 0.95 091 0.96 0.93
1/4096 | 0.94 094 055 082 090 095 0.92
1/8192 1 097 0.93 091 079 083 094 0.91
1/16384 | 099 092 06.81 077 0.87 0.9 0.90
1/32768 | 0.99 0.92 088 0.74 087 0.93 0.89
1/65536 | 0.99 092 083 071 087 003 0.88
1/131072 | 0.99 092 077 073 0.87 0.93 0.87
1/262144 | 0.99 086 - 0.76 ©0.79 0.86 0.93 0.87
1/524288 | 0.99 (.81 0.74 0.83 0.87 0.93 0.86
1/1048576 | 0.99 ©.80 071 085 0.88 094 0.86
1/2097152 | .99 080 070 085 090 0.94 0.86
1/4194304 | 0.99 0.80 6.69 0.84 091 0.95 0.86
1/8388608 | 0.90 0.80 0.69 0.8% 081 0.95 0.86
/16777216 | 0.99 0.80 0.69 0.82 .91 0.96 0.86
1/33554432 | 099 0.80 0.69 082 090 0.96 0.86
Aggregate | 0.99 0.80 069 082 0.90 0.96 0.86

'The main part of A is the function v, which gives the mesh points in the layer.
Essentially, ¢ is 2 modification of the inverse of the boundary-layer function v,. On
the rest of the interval ¢ is extended by a polynomial so that A € C*(I). Moreover,
A is strictly monotone.

Let us mention that meshes of similar types were used in [12], [13], (17}, and [19].
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TABLE 3.4
Ezperimental order of uniform convergence for problem (3.6) with k = 3.

n
€ 8 16 32 64 128 256 | Average
1727068 086 003 007 008 0489 | 0400
1/4 | 058 082 091 096 098 099 | 087
1/8 | 046 0.76 089 095 097 099 | 0.84
1/16 | 020 071 0.87 054 087 099 | 078
1/32 | 075 083 092 095 098 099 | 090
1/64 | 0.83 089 0.94 097 088 059 | 003
1/128 | 0.87 087 0.94 097 098 099 | 004
1/256 | 0.87 0.87 0.94 096 098 099 | 054
1/512 | 0.89 0.86 094 097 098 099 | 094
1/1024 | 091 092 053 096 098 099 | 095
1/2048 | 094 0.85 093 096 098 099 | 094
1/4096 | 0.79 0.92 095 096 098 099 | 0.93
1/8192 | 0.72 0.96 094 097 06599 099 i 093
1/16384 | 070 094 096 098 059 099 093
1/32768 | 0.6 093 0897 0098 099 100 | 093
1765536 | 0.6 0.93 097 088 097 093 | 091
1/131072 | 0.60 092 098 098 090 094 | 090
1/262144 | 0.69 092 098 097 088 094 | 0.90
1/524288 | 0.69 0.92 098 094 089 094 | 0.89
1/1048576 | 0.69 092 098 092 090 0654 | 0.89
1/2097152 | 0.69 092 0098 090 082 095 | 089
174194304 | 0.69 092 0698 0.88 093 095 | 089
1/8388608 | 0.60 0.92 098 0.87 0983 096 | 089
1/16777216 | 0.69 0.92 098 086 093 096 | 0.89
1/33554432 | 069 092 098 086 092 097 | 089
Aggregate | 0.60 002 008 086 002 087 | 0.89

It can be proved that the upwind scheme (scheme (3.1) with ¢; replaced by 1) on
the mesh (3.7) has first-order uniform convergence. Therefore, the question arises as
to whether the fitted scheme (3.1)-on the mesh (3.7) gives better results than the
upwind scheme. The answer is no, as the results of Table 3.5 show: obviously, first-
order uniform convergence is present, and the results are practically the same as the
results of the upwind scheme. The reason for this is that both schemes use the same
first-order discretization of the a(z)u'-term.

TABLE 3.5
Error [ul — wh] for problem (3.5) with k = 2; scheme (3.1) on the mesh (3.7) with o = %

£
n 108 19712 1p—i8
50 | 3.19-2 3.65-2 3.70-2
100 | 1552 1.83-2 1.86-2
200 | 7.78-3  8.11-3  9.31-3

The choice o = % gives about 25% of the total of mesh steps in the interval [0, /€]
representing the layer. The percentage can be higher if a greater value of o is used.

4. Improved scheme. We would now like to improve scheme (3.1} on the spe-
cial mesh (3.7). We modify (3.1) to obtain a discretization of problem (1.1) at the
midpoints

hr; .
Tjp1/e = mi,@,m%i, i=1(1)n—1.
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TABLE 3.2
Ezperimental order of uniform convergence for problem (3.5) with k = 3.

T
€ 8 16 32 64 128 256 | Average
/21092 098 099 100 1.00 1.00 0.98
1/4 | 086 095 098 09 083 1.00 0.96
1/8 1 082 092 096 098 099 099 0.94
1/16 | 0.80 089 095 0.97 099 0.99 0.93
1/32 [ 078 0.88 .94 097 098 0.99 0.92
1/64 1 075 087 094 097 098 099 0.82
1/128 | 0.73 088 084 097 098 099 4.91
1/256 | 0.73 0.88 094 0.97 0098 0.99 0.92
1/512 1 0.75 0.88 094 0.97 098 0.99 0.92
1/1024 | 0.77 089 0594 097 098 009 0.92
1/2048 | 0.78 0.89 094 097 098 099 0.93
1/4006 | 0.79 090 094 097 098 0.99 0.93
1/8192 1 078 090 095 097 098 0.99 0.93
1/16384 | 0.78 090 085 097 0983 099 0.93
1/32768 | 0.78 090 095 097 099 099 0.93
Aggregate | 0.8  0.90 095 0.97 0.9 0.99 0.93

TABLE 3.3
Erperimental order of uniform convergence for problem {3.6) with k = 2.

n
€ 8 16 32 64 128 256 | Average
1/2 1 6.86 090 095 098 099 0.99 0.94
1/4 | 670 087 094 0.97 098 099 0.91
1/8 | 0.67 0.84 092 096 098 0.99 0.89
1/16 | 0.61 0.83 092 096 098 099 0.88
1/32 | 044 074 089 094 047 099 0.83
/64 { 0.70 0BT 092 096 098 0.99 8.9t
1/128 | 0.84 0.86 0.92 096 098 (.99 0.93
1/256 | 0.8¢ (.88 093 096 098 0.99 0.93
1/512 | 0.84 0.88 0.93 0.96 098 0.99 0.93
1/1024 | 077 087 094 09 098 0.99 0.92
172048 | 0.89 082 085 095 0.1 096 0.93
1/4006 | 6.94 094 095 082 0.90 0.5 0.92
1/8192 | 0.97 093 091 079 0.8 094 0.91
1/16384 | 099 092 091 0.77 087 0.94 0.90
1/32768 | 0.99 .92 0.8 074 0.87 0.93 0.89
1/65536 | 0.99 092 083 071 087 (.93 0.88
1/131072 | 0.9 092 077 073 0.87 (.93 0.87
1/262144 | 0.93 0.86 076 0.9 0.86 0.93 0.87
1/524288 | 0.9% 0.81 G674 (.83 0.87 0.93 0.86
1/1048576 { 099 080 071 0.85 0.88 0.84 6.86
1/2097152 | 0.99 0.80 070 0.85 090 0.94 6.86
1/4194304 | 0.99 080 069 0.84 0.9 095 (.86
1/8388608 | 0.99 0.80 069 083 051 095 0.86
1/16777216 | 0.99 0.80 069 082 .91 096 0.86
1/33564432 | 099 080 069 082 090 0.96 0.86
Aggregate | 099 080 069 082 0.90 096 0.86

The main part of A is the function ¢, which gives the mesh points in the layer.
Essentially, ¢ is a modification of the inverse of the boundary-layer function v.. On
the rest of the interval ¢ is extended by a polynomial so that A € C2(I). Moreover,
A is strictly monotone.

Let us mention that meshes of similar types were used in [12], [13], [17], and [19].
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TasLs 3.4
Ezperimental order of uniform convergence for problem (3.6) with k = 3.

n
€ 8 1] 32 64 128 256 | Average
i/21 068 08 083 0897 098 0.99 6.90
1/4 | 0.58 082 091 096 098 0.99 0.87
1/8 { 0.46  0.76 0.8 0985 097 0.99 0.84
1/16 | 0.20 071 087 094 097 0.99 0.78
1/32 1 0.75 0.83 092 095 098 059 0.90
1/64 | 0.83 089 094 097 098 099 0.93
1/128 | 0.87 0.87 094 097 098 0.99 0.94
1/256 | 0.87 087 084 0.96 098 099 (.94
1/512 | 0.89 0.86 0984 097 0.98 0.99 0.94
1/1024 | 691 092 093 096 098 099 0.95
1/2048 | 0.94 .85 093 096 098 099 0.94
1/4096 | 6.79 092 095 096 098 099 0.93
1/8192 | 0.72 096 094 097 099 0.99 0.93
1/16384 | 0.70 0.94 096 098 099 099 0.93
1/32768 | 0.69 0.93 097 0.58 0989 1.00 0.93
1/656536 | (.69 0.93 097 098 097 0.83 0.91
1/131072 | 0.69 092 098 098 090 0.94 0.90
1/262144 | 669 092 (98 0987 088 0.94 0.90
1/524288 | 069 0.92 098 084 0.89 0.54 0.89
1/1048576 | 0.69 0.92 098 092 090 054 0.89
1/2097152 1 0.69 092 098 090 092 0095 0.89
1/4194304 | 065 092 058 088 093 095 (.89
1/8388608 | 0.69 092 098 087 093 0.96 0.89
1/16777216 | 0.69 092 098 086 093 096 0.89
1/33554432 | 0.69 0.92 0988 0.86 092 097 .89
Aggregate | 0.69 092 098 085 0.92 0.97 0.89

It can be proved that the upwind scheme {scheme (3.1) with o; replaced by 1} on
the mesh (3.7) has first-order uniform convergence. Therefore, the question arises as
to whether the fitted scheme (3.1) on the mesh {3.7) gives better results than the
upwind scheme. The answer is no, as the results of Table 3.5 show: obviously, first-
order uniform convergence is present, and the results are practically the same as the
results of the upwind scheme. The reason for this is that both schemes use the same
first-order discretization of the a{x)u'-term.

TABLE 3.5
Error {ju? — wh for problem {3.5) with k = 2; scheme (3.1) on the mesh (3.7) with a = .

€
n 10—%  19-12 1p18
50 | 3.19-2 3.65-2 3.70-2
100 | 1.55-2  1.83-2 1.86-2
200 | 7.78-3  9.11-3  9.31-3

The choice a = £ gives about 25% of the total of mesh steps in the interval [0, /]
representing the layer. The percentage can be higher if a greater value of a is used.

4. Improved scheme. We would now like to improve scheme (3.1} on the spe-
cial mesh (3.7). We modify (3.1) to obtain a discretization of problem (1.1) at the
midpoints

hi .
Tipr/a = &4 e ““"2-"’-"1—, 1= 1(1)71 - 1.
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The modified scheme is given by

{4.1a) wy = Up,

(4.1b)

fhwi = —e5: D" w; — a(@i4172) D'w; + (@11 2) Dow; = fl@ig12), 4=1(1)n 1,
(4.1c) w, = 7.

Here

Dow; = uw; — Lwjy
and
F; = o exp(—phis1/2}

so that

FiD Ve(@ip1/2) = v (2544 /2)-

The midpoint scheme (4.1) with 1 instead of &; was used in [18]. Note that the values
of a, ¢, and f at ;412 could be replaced by 3(a(z;) + a(z:41)), ete.

To analyze the consistency error of the operator 7" on the special mesh we need
properties of the function A from (3.7b). First, it is easy to see that

Ay =0, i=0,1,2, teloal

and, since ¢ is small, it follows that 3 > 0, i.e.,

N8 >0, te ol

Then we have

AD) > A0 (@) =pD(a) >0,  teal],
first for 1 = 2 and then for i = 1,0. Thus
(4.2) Ay >0,  i=01,2, tel
Also, note that

(4.3) MdB <M, i=0,1,2, tel.

We shall use the following inequalities as well:

(4.4) exp(—{t)/ve) < Mexp(~v/(v—1t)),  telo,y),
{4.5) a (a + ?—21—) <M{n™2 + Yen ™t + Ye).
Let

e =h .
Fi = Loue () — f(-?wi/z), i=11)n 1,

Fg = Fp = 0.
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Then we have the following lermma.
LeMMA 4.1, The consistency error of the operator I" on the mesh (3.7) satisfies

s 8= (Ver2)-
Proof. For ¢ = 1{1}n — 1 we have
7ol < Ri+ 8 + Ty
where

Ry = €f7i D" uc(zi) — ul (Tig1/2)]

= efFilD"zc(x:) — 2! (@ig1/2)s

)
I

= afripr/2) | D'ue(es) — wip{zizas2)ls

= c(m,;+1/2)ED°u€{:ci) = tte(Tiy1/2)]

=3
!

Let us consider R; first. In the same way as in the proof of Lemima 3.1, it follows that
R, < R} + R?,
where

1
Ri- - Meio-_z - 1! (1 + 7€8W#—$iw1) < Mhi+1(\/g+ Em'u"m“‘l)

(the last inequality follows because of (3.3)) and
R} = e|D" 2{;) — 2! (Tiy1/2)| < Mhayi(e+ e Hemim1).
Let us show that
(4.6) RI<8  j=1,2
Using (4.2) and (4.3), we have
{4.7) hiz1 £ %a\l(twl) < %,
and to complete the proof of (4.6) we have only to show that

{4.8) hippe WP L8,

To do this we distinguish three cases:

19: ti-y 2
3
20 . toi<ea and #_4 S'Y“E’
3
30 . q/mmnm(t,;m1<a.

In case 1%, by (4.2) and (4.4) we have

g oyt - &%
e T < e HTM@) < pfe— v/ Ve
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which, together with (4.7), gives (4.8). In case 20

hipre PTimn < M§{7 — ti+l)—-2e-'r/('¥—tdw1) < Mﬁ
ki

because in this case
¥ = tip1 = 30y — i)
Finally, in case 3° we use (4.7) and
g HATi-1 < g~ Hatly—(3/n)) < AMe= Va3
{(where (4.4) has been used), and (4.8) follows again. Next we have
8i < My, ohf 1 (14 e 2 Bemrem)
< M(n=? + a2 RE e Bepmiory,
Then in cases 1% and 2° we can prove
(4.9) S; < Mn?

by the same technique as in the proof of (4.8). Case 3° must be treated in a different
way. We have

SzSSzl+SE>

where
5 Mm%+1/2h1 [te (Zip1) ~ tels)]
<M [( Litq 9;2)}: -{—xf (1 + iemu,zi)]
i1 \/E
< M{zipy + V)
and

1
Sf = M:E?+}/2 (] -+ %) e THTit1/2 S M(:Ci.;.z + \/é)
Note that case 3% is possible only if
o 3
(4.10) Ye < =,
n
Next, because £, < @+ % we have

£Ei+1<A(Ol+E> EII(Q+'2‘)=
i K

and from (4.5} and {4.10) it follows that

(411) Tit1 < MR‘Q.




A MULTIPLE BOUNDARY TURNING POINT PROBLEM 1417

From this and from {4.10) we conclude that
S <Mn? j=12,

and (4.9) is proved.
Finally, for T; we have

Ty < M [3(higr — houl(@iay2) + hE gl ()],
with 1; € (-1, %), Then, by the same technique, in cases 1° and 2° we obtain
(4.12) T; < Mn~2.
Note here that because of {4.2), (4.3)
Ripy —hi < 072N (#41) < Mn™2
In case 3° we first denote T} by 7j(u.). Then, by Theorem 2.4
Ti{ue) < |w|Ti{ve) + Tilze)-

Now we have
Tilve) € Mue(ziq) < Mn™?

in the same way as in the proof of (4.8) in case 3. Next, for some 7; € (&;-1, Ziy1)
Ti(ze) € Mhiya|ze(mi)| < My,
and by (4.11) we have
Ti(ze) < Mn ™2,

Thus (4.12) is proved, and the lemma follows. o
THEOREM 4.2. The discrete problem (4.1) is stable uniformly in €, and it has a
unique solution W*. Additionally, on the mesh {3.7) we have

ful —wh| < 6.

Proof. The stability can be proved in the same way as the stability of (3.1) in
Theorem 3.2. The result follows by Lemma 4.1. 0

In Tables 4.1 and 4.2 we present some numerical results of scheme (4.1} on the
mesh (3.7). Problem (3.5) is treated with k = 2 and & = 3. Since ¢ is small, the rate
of the uniform convergence is 2.

TABLE 4.1

Error |Jul —@?} for problem (3.5) with k = 2; scheme (4.1) on the mesh (3.7) with o = %

€
n | 10-% 10712 10718
50 | 7.12-3 7.55-3  7.58-3
00 | 1.8%-3 2.01-3  2.02-3
200 | 4.85-4 5.19-4  5.27-4

A comparison of Tables 3.5 and 4.1 clearly shows that scheme (4.1} is better than
(3.1) on the special mesh. Note that this is not the case on arbitrary meshes; for
instance, scheme (4.1) does not converge uniformly in € on equidistant meshes.
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TapLE 4.2
Error [|ul — @™} for problem (3.5) with k = 3; scheme (4.1} on the mesh (3.7) with o = %

£
n| 1079 1g—-12  1p-18
50 | 7.83-3 8333 8.37.3
100 | 2.08-3 2233 2243
200 | 5.39-4 5.75-4 5.78-4
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