
Solution of Singular Perturbation Problems via

the Domain Decomposition Method on Serial

and Parallel Computers

Paul A. Farrell, Igor P. Boglaev and Vadim V. Sirotkin

Computer Science Program

Technical Report Number CS1994-01-12

August 31, 1995

Department of Mathematics and Computer Science

Kent State University

Kent, Ohio 44242.

Parallel Domain Decomposition Methods for Semi-linear

Singularly Perturbed Di�erential Equations

Paul A. Farrell�

Department of Mathematics and Computer Science

Kent State University

Kent, OH 44242, U.S.A.

Igor P. Boglaev Vadim V. Sirotkin

Institute of Microelectronics Technology

Russian Academy of Sciences, Moscow District, 142432

Chernogolovka, Russia.

August 31, 1995

Abstract:- Domain decomposition methods for the solution of semi-linear selfadjoint

and non-selfadjoint singularly perturbed di�erential equations are considered. An iterative

domain decomposition algorithm suitable for parallelization is described and convergence

of the algorithm is established. The implementation on a shared memory multiprocessor

is described and numerical examples are presented to demonstrate the e�ectiveness of the

algorithm.

1. Introduction

We consider iterative domain decomposition algorithms for the solution of semi-linear

selfadjoint and non-selfadjoint singularly perturbed two-point boundary value problems.

These reduce the given problem to sequences of boundary value problems on appropriate

subdomains. Iterative domain decomposition algorithms, which are suitable for paralleliza-

tion have been described previously in [3, 4]. In this paper, we describe iterative algorithms,

which are suitable for implementation on shared memory or message passing MIMD com-

puters. We prove that these converge to the solution of the original problem and derive the

rate of convergence. We illustrate the methods by implementing the algorithm using �tted

�nite di�erence methods on special non-uniform grids. The methods are implemented on a

26 processor Sequent Balance shared memory MIMD computer, and results are presented

�Supported by The Research Council of Kent State University

1

giving the speed-up of the algorithm compared to the usual sequential domain decomposi-

tion algorithm.

We consider the following two semi-linear singular perturbation problems. The �rst is

the selfadjoint problem

L�u(x) � �u00 = f(x; u); x 2
;
 = (0; 1); (1a)

u(0) = u0; u(1) = u1; (1b)

fu � �20 ; �0 = const > 0; (fu = @f=@u); (1c)

where � � �2, � is a small positive parameter. The solution of (1a)-(1c) has boundary layers

at x = 0 and x = 1. The width of these boundary layers is of the order of h� = � j ln(�) j =�0.

For simplicity, we assume in this paper that the solution u(x) exhibits a boundary layer

only at x = 0 (that is that the reduced solution satis�es the boundary condition (1b)).

The second problem is the non-selfadjoint problem

L�u(x) � �u00 + �(x)u0 = f(x; u); x 2
;
 = (0; 1); (2a)

u(0) = u0; u(1) = u1; (2b)

�(x) � �0 = const > 0; fu � 0; (2c)

where � is a small positive parameter. The solution of (2a)-(2c) has a boundary layer at

x = 0 of width h� = � j ln(�) j =�0.

In this paper we consider two iterative algorithms based on domain decomposition for

the solution of the semi-linear singularly perturbed problems (1) and (2). Domain decom-

positions and iterative algorithms for these problems are introduced in section 2. Section

3 gives the proof of the convergence results for these algorithms. In section 4 we present

numerical examples and compare the performance of the serial and parallel versions of these

iterative algorithms.

2. Iterative Algorithms

Consider the decomposition of the domain
 = (0; 1) into two overlapping subdomains

1 and
2:

1 = (0; xr);
2 = (xl; 1); 0 < xl < xr < 1:

We now introduce two sequences of functions fvn(x)g; fwn(x)g; n � 1; satisfying the

equations:

L�v
n(x) = f(x; vn); x 2
1; vn(0) = u0; vn(xr) = vnr ; (3a)

L�w
n(x) = f(x; wn); x 2
2; wn(xl) = wn

l ; wn(1) = u1: (3b)

2

Here L� is de�ned by (1a) or (2a) and u0; u1 by (1b) or (2b), respectively.

We now construct the two iterative algorithms. The �rst, A1, is the normal Schwarz

alternating procedure. The boundary conditions vnr ; w
n
l from (3a), (3b) are de�ned by

vn+1r = wn(xr); wn
l = vn(xl); (4)

where an initial guess v1r must be prescribed.

The second algorithm, A2, is constructed using the interfacial problem

L�z
n(x) = f(x; zn); x 2
inf = (Xl; Xr); (5a)

zn(Xl) = vn(Xl); zn(Xr) = wn(Xr);

where Xl < xl < xr < Xr. Here the boundary conditions from (3a); (3b) are determined by

the following condition rather than by (4),

vn+1r = zn(xr); wn+1
l = zn(xl); (5b)

where the initial guesses v1l and w1
r are given.

Algorithm A1 is a serial procedure, since the solution vn of (3a) must be obtained in

order to determine the boundary condition wn
l = vn(xl) used in (3b). Thus (3a) and (3b)

are executed in lockstep fashion. Algorithm A2 can however be carried out by parallel

processing, since on each iteration step problems (3a) and (3b) can be solved concurrently

to give both vn and wn. The solution of the interfacial problem (5a), (5b) represents the

sequential part of the algorithm.

3. Convergence of the Iterative Algorithms

In this section we formulate and prove convergence results for algorithms A1 and A2.

In the following lemmas, we obtain some technical results required later.

We introduce two linear two-point boundary value problems related to (1) and (2) given

by :

L�y(x)� b(x)y(x) = 0; x 2
 = (x1; x2); (6a)

y(x1) = y1; y(x2) = y2; (6b)

where the coe�cient b(x) satis�es the conditions

b(x) � b0 =

�
�20 ; if L� from (1),

0; if L� from (2).
(6c)

Denote by '
I;II

(x) the solutions of the linear problems

L�'
I

 � b0'

I

 = 0; x 2
; (7a)

3

'I

(x1) = 1; 'I

(x2) = 0:

and

L�'
II

 � b0'

II

 = 0; x 2
; (7b)

'II

 (x1) = 0; 'II

 (x2) = 1:

respectively.

Lemma 1. If y(x) is the solution to (6), then for all x 2 �
 we have the estimate

j y(x) j� 'I

(x) j y1 j +'

II

 (x) j y2 j; (8)

where '
I;II

are given by (7a) and (7b) respectively.

Proof: Let Y (x) be the solution of the linear problem

L�Y (x)� b0Y (x) = 0; x 2
; Y (x1) =j y1 j; Y (x2) =j y2 j : (9)

From the maximum principle for the operator (L� � b0) we conclude that Y (x) � 0; x 2
.

From (6) and (9) we have

L�(Y � y)� b(Y � y) = (b0 � b)Y; x 2
; (Y � y)x1;x2 � 0:

Using (6c) and the inequality Y � 0; by the maximum principle for the operator (L� � b),

it follows that Y � y � 0; x 2 �
. This is equivalent to j y(x) j� Y (x); x 2 �
. Since the

solution of problem (9) can be written in the form

Y (x) = 'I

(x) j y1 j +'

II

 (x) j y2 j; x 2 �
;

we obtain the required estimate (8).

Lemma 2. The solutions '
I;II

 (x) of problems (7a) and (7b) satisfy the following inequali-

ties

0 < '
I;II

(x) < 1; x 2
; (10a)

cI'I

(x) + cII'II

 (x) � max(cI ; cII); x 2 �
; (10b)

where coe�cients cI ; cII � 0;

'I

(x) �

�
exp[��0(x� x1)=�]; if L� from (1),

exp[��0(x� x1)=�]; if L� from (2),
x 2
; (10c)

'II

 (x) � exp[��0(x2 � x)=�]; if L� from (1); x 2
: (10d)

4

Proof: These results follow immediately from the analytic expressions for '
I;II

(x). For

the operator L� from (1) we have

'I

(x) = sinh[�0(x2 � x)=�]= sinh[�0(x2 � x1)=�];

'II

 (x) = sinh[�0(x� x1)=�]= sinh[�0(x2 � x1)=�]:

For the operator L� from (2) it follows that

'I

(x) = 1� I(x)=I(x2); 'II

 (x) = 1� 'I

(x);

I(x) =

Z x

x1

[E(s)]�1ds; E(x) = exp

�
1

�

Z x

x1

�(s)ds

�
:

We now formulate and prove convergence results for algorithms A1 and A2.

Theorem 1. If xl < xr, then the iterative algorithm (3), (4) (that is the Schwarz alternating

procedure) converges to the solutions of problems (1) and (2) with rate 0 < q < 1:

Proof: We introduce the functions �n(x) = vn(x)�vn�1(x); �n(x) = wn(x)�wn�1(x); n �

2: From (3), (4) and the mean-value theorem, it follows that �n(x) and �n(x) are the solu-

tions of the following problems

L��
n(x)� fnv (x)�

n(x) = 0; x 2
1; �n(0) = 0; �n(xr) = �n�1(xr); (11a)

L��
n(x)� fnw(x)�

n(x) = 0; x 2
2; �n(xl) = �n(xl); �n(1) = 0; (11b)

where fny � fy(x; �
n
y); �

n
y 2 (yn�1; yn). Let

�n = max[j �n(xr) j; j �
n(xl) j]; n � 2:

From Lemma 1, we conclude that

max
x2�
1

j �n(x) j� �n; max
x2�
2

j �n(x) j� �n:

Again, using Lemma 1 and (11), it follows that

j �n(xr) j=j �
n�1(xr) j�j �

n�1(xl) j '
I

2
(xr) �j �

n�1(xr) j '
I

2
(xr)'

II

1
(xl);

j �n(xl) j=j �
n(xl) j�j �

n�1(xr) j '
II

1
(xl) �j �

n�1(xl) j '
I

2
(xr)'

II

1
(xl):

From this we obtain

�n � q�n�1; n � 2; q = 'I

2
(xr)'

II

1
(xl): (12)

5

Using estimate (10a) from Lemma 2, we conclude that 0 < q < 1: This completes the proof

of the convergence of algorithm A1.

Corollary 1. For algorithm (3), (4) the following bounds on q hold

qA1� � �qA1� ; �qA1� = exp[�2�0(xr � xl)=�] < 1;

qA1� � �qA1� ; �qA1� = exp[��0(xr � xl)=�] < 1;

where qA1� ; qA1� correspond to problems (1) and (2), respectively.

Proof: From (12), evaluating q using (10c), (10d) we obtain the required estimates for

qA1� and qA1� .

Theorem 2. If Xl < xl < xr < Xr, then the iterative algorithm (3), (5) converges to the

solutions of problems (1) and (2) with rate 0 < q < 1:

Proof: Analogously to the proof of Theorem 1, we introduce the functions �n(x) =

vn(x)� vn�1(x); �n(x) = wn(x)�wn�1(x); �n(x) = zn(x)� zn�1(x); n � 2: From (3), (5)

and the mean-value theorem we conclude that �n(x); �n(x) and �n(x) are solutions of the

problems :

L��
n(x)� fnv (x)�

n(x) = 0; x 2
1; �n(0) = 0; �n(xr) = �n�1(xr); (13a)

L��
n(x)� fnw(x)�

n(x) = 0; x 2
2; �n(xl) = �n�1(xl); �n(1) = 0; (13b)

L��
n(x)� fnz (x)�

n(x) = 0; x 2 !; �n(Xl) = �n(Xl); �n(Xr) = �n(Xr): (13c)

Let

�n = max[j �n(xr) j; j �
n(xl) j]; n � 2:

Using the estimates from Lemma 1, we have

max

�
max
x2�
1

j �n(x) j; max
x2�
2

j �n(x) j; max
x2�!

j �n(x) j

�
� �n:

By Lemma 1, using the boundary conditions from (13), we conclude that the following

estimates hold :

j �n(xr) j=j �
n�1(xr) j�j �

n�1(xr) j '
II

1
(Xl)'

I
!(xr)+ j �n�1(xl) j '

I

2
(Xr)'

II
! (xr);

j �n(xl) j=j �
n�1(xl) j�j �

n�1(xr) j '
II

1
(Xl)'

I
!(xl)+ j �n�1(xl) j '

I

2
(Xr)'

II
! (xl): (14)

From this, using (10b), we obtain

�n � q�n�1; n � 2; q = max
h
'II

1
(Xl); 'I

2
(Xr)

i
: (15)

6

Using Lemma 2, it follows that q < 1: This proves the convergence of algorithm A2.

Corollary 2. For problem (1), we have the following bound on q

qA2� � �qA2� ; �qA2� = maxfexp[��0(Xr � xl)=�]; exp[��0(xr �Xl)=�]g:

For problem (2) we have

qA2� � �qA2� ; �qA2� = 21=2maxfexp[��0(Xr � xl)=2�]; exp[��0(xr �Xl)=2�]g:

Proof: From (15), evaluating q using the estimates from Lemma 2, we get the required

estimate for qA2� .

To prove the bound for qA2� , we express �n�1 in terms of �n�2 and substitute in (14) :

j �n(Xl) j�
n
[j �n�2(Xl) j '

I
!(xr)+ j �n�2(Xr) j '

II
! (xr)]'

I
!(xr)'

II

1
(Xl)+

+ [j �n�2(Xl) j '
I
!(xl)+ j �n�2(Xr) j '

II
! (xl)]'

II
! (xr)'

I

2
(Xr)

o
'II

1
(Xl);

j �n(Xr) j�
n
[j �n�2(Xl) j '

I
!(xr)+ j �n�2(Xr) j '

II
! (xr)]'

I
!(xl)'

II

1
(Xl)+

+ [j �n�2(Xl) j '
I
!(xl)+ j �n�2(Xr) j '

II
! (xl)]'

II
! (xl)'

I

2
(Xr)

o
'I

2
(Xr):

From this we conclude, using Lemma 2, that

�n � max
nh
'I
!(xr)'

II

1
(Xl) + 'II

! (xr)'
I

2
(Xr)

i
'II

1
(Xl);

h
'I
!(xl)'

II

1
(Xl)+

+'II
! (xl)'

I

2
(Xr)

i
'I

2
(Xr)

o
�n�2 �

h
'I
!(xr) + 'I

2
(Xr)

i
�n�2; n � 3:

Thus, it follows that

�n �
h
'I
!(xr) + 'I

2
(Xr)

i1=2
�n�1; n � 2:

This proves the bound on qA2� .

Remark. Theorems 1 and 2 can be generalized straightforwardly to multi-domain decom-

position.

4. Numerical Results

We emphasize here, as is clear from Theorem 2, that the convergence results for algo-

rithm A2 are independent of the singularly perturbed character of problems (1) and (2). To

7

construct e�ective numerical methods for algorithm A2, it is necessary to take into account

the fact that the solutions of problems (1) and (2) have a boundary layer of size h� at x = 0.

We introduce the \natural" decomposition of the original domain
, in which the bound-

ary layer is localized in subdomain
1, and the region where the solution is smooth is

included in
2, that is we require:

xl � h�: (6)

E�ective numerical methods for singular perturbation problems, such as those based on

special nonuniform grids (cf. [1, 2]), exhibit the property of uniform convergence with respect

to the small parameter. These special grids are constructed in such a way that the number

of grid points inside the boundary layers is approximately equal to the number of grid

points outside the layers. Thus, if (6) holds and, on subdomains
1;
2 special nonuniform

grids are used, the computational cost of the numerical method for problem (3a) on
1 is

approximately equal to that for (3b) on
2. This property, known as load balancing, is very

important for the implementation of algorithm A2 on parallel computers, since it avoids

loss of e�ciency due to one processor being idle. The size of the overlap domain [xl; xr]

and hence of the interfacial region [Xl; Xr] also a�ects the cost of an A2-iteration, since

the solution of the problem on the interfacial region represents the sequential part of the

algorithm A2. It is also worth mentioning, that condition (6) decreases the number of grid

points needed for the interfacial problem (5), thus minimizing the time for its solution.

We now present the results of some numerical experiments using iterative algorithms

A1 and A2. We shall consider the implementation of these algorithms on a shared memory

multiprocessor, the Sequent Balance B21000, in the Department of Mathematics and Com-

puter Science at Kent State University. This has 26 processors, each with a 32-bit National

Semiconductor NS32032 capable of 0.75 MIPS, and 32 MB of shared memory. The Bal-

ance operating system, DYNIX, provides the ability to bind processes to processors, using

the processor a�nity facility, and also a utility team, which modi�es system parameters to

permit more accurate timings. The latter gives the highest priority to the program and

disables swapping, page fault frequency adjustments and process aging. These privileges

allow a user program to execute with a minimum of system overhead to distort benchmark

times. This facility was employed in all the timings given below, and e�ectively eliminated

contention for the processors. The coding used the Sequent parallel directives to parallelize

do loops in the Fortran code, library calls to the microsecond clock for the timings, and

to the parallel processing library to set and manage the number of processors, and to syn-

chronize the processes after the solution of the interfacial problem. The overhead of these

operations was negligible.

Example 1. We consider problem (1), where f(x; u) = 1� e�u; u0 = 1; u1 = 0: Introduce

a non-equidistant grid !x = fxi; 0 � i � Nxg. The subdomains
1;
2 and
inf from (3),

(5a) are chosen such that: xl = h� = xj ; xr = xk ; 0 < j < k < Nx; k � j � 1; Xl =

8

xj�1; Xr = xk+1.

In the boundary layer [0; h�], the mesh generating function is a logarithmic type function

similar to that given in [1]. We approximate the di�erential equation (1a) by a simple �tted

variable-mesh di�erence formula. The nonlinear algebraic systems (after discretization of

(3) and (5)) are solved by a one-step Newton method. In Table 1 and Table 3, we give

the number of iterations, Kd, to achieve an error of 10�5, for the direct (undecomposed)

method from [1], and for iterative algorithms A1 and A2, KA1 and KA2 respectively, for

various � and overlapping interval sizes h = xr � xl. In Table 1 the number of mesh points

Nx = 101; j = 51 and k � 52 and in Table 3 Nx = 501; j = 251 and k � 252. It

should be noted that these experiments indicate that the number of iterations is bounded

independent of � and is approximately constant for su�ciently small �. Table 2 and Table

Kd KA1 KA2

� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 4 6 10 33 58 202 8 11 26 40 121

.01 4 4 4 4 4 4 4 4 4 5 10

.001 4 4 4 4 4 4 4 4 4 4 4

.0001 4 4 4 4 4 4 4 4 4 4 4

Table 1: Number of iterations for problem (1) for Nx = 101

Sd = td=tA2 SA1 = tA1=tA2
� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 0.71 0.55 0.22 0.15 0.05 1.23 1.59 2.04 3.33 2.94

.01 1.37 1.49 1.59 1.27 0.62 1.61 1.72 1.79 2.17 2.44

.001 1.11 1.23 1.49 1.54 1.56 1.41 1.52 1.72 1.75 1.56

.0001 0.87 0.98 1.28 1.37 1.49 1.20 1.32 1.54 1.61 1.72

Table 2: Speedups Sd and SA1 for problem (1) with Nx = 101

4 give the speedups Sd = td=tA2, and SA1 = tA1=tA2, with respect to the direct method and

with respect to algorithm A1. Here td is the execution time for the direct method and

tA1 for algorithm A1 on one processor, and tA2 for algorithm A2 on two processors of the

Sequent Balance. It should be remarked that in all cases A2 is faster than A1. Note that the

dominant e�ect here is the number of iterations required. In general, one does not expect a

two-fold speedup (that is S = 2) for A2 over either the direct method or A1 since, due to the

interfacial problem, A2 is not perfectly parallelizable. To make an approximate theoretical

estimate of the speedup expected, recall that all the problems involved are solutions of tri-

diagonal linear systems. Hence the cost is proportional to the number of grid points. On

9

Kd KA1 KA2

� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 5 6 10 33 58 202 10 15 33 56 145

.01 4 4 4 4 6 14 4 4 5 6 11

.001 4 4 4 4 4 4 4 4 4 4 4

.0001 4 4 4 4 4 4 4 4 4 4 4

Table 3: Number of iterations for problem (1) for Nx = 501

Sd = td=tA2 SA1 = tA1=tA2
� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 0.77 0.54 0.20 0.15 0.06 1.06 1.23 1.49 1.96 2.63

.01 1.54 1.64 1.37 1.14 0.61 1.75 1.85 1.52 1.92 2.44

.001 1.35 1.49 1.67 1.67 1.67 1.61 1.72 1.85 1.85 1.85

.0001 1.06 1.23 1.54 1.59 1.67 1.39 1.52 1.75 1.82 1.85

Table 4: Speedups Sd and SA1 for problem (1) with Nx = 501

this basis for a single iteration S � 100=(50 + 2ninf), where ninf is the number of points

in the interfacial region. This speedup is achieved for the overall time only if KA2 � Kd,

and this requires that there be su�cient points in the interfacial region. Thus an optimum

strategy is to choose ninf as small as possible subject to this requirement. In the case of

problem (1) this would give an optimum S = 1:81. The remaining degradation seen in the

tables can be attributed to the overhead for parallel directives and bus contention.

Example 2. We consider problem (2), where � = 1+x; f(x; u) = 1�e�u ; u0 = 1; u1 = 0:

We approximate problem (2) by a di�erence scheme on the special nonuniform grid from

[2]. The subdomains
1;
2 and
inf are chosen in the same manner as in Example 1.

The number of iterations for Nx = 101 and Nx = 501 are given in Tables 5 and 7, and the

corresponding speedups in Tables 6 and 8. We should remark that the anomalous results

Kd KA1 KA2

� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 3 7 12 46 81 295 11 17 36 43 51

.01 3 3 3 7 12 43 4 4 6 7 8

.001 3 3 3 3 3 6 3 3 3 3 4

.0001 2 2 2 2 2 2 3 3 3 3 3

.00001 2 2 2 2 2 2 2 2 2 2 2

Table 5: Number of iterations for problem (2) for Nx = 101

10

Sd = td=tA2 SA1 = tA1=tA2
� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 0.43 0.31 0.16 0.13 0.11 1.06 1.23 2.08 3.33 10.00

.01 1.11 1.22 0.87 0.76 0.67 1.27 1.35 2.04 3.03 10.00

.001 1.39 1.52 1.56 1.56 1.15 1.61 1.72 1.72 1.72 2.50

.0001 0.97 1.05 1.08 1.08 1.08 1.11 1.16 1.19 1.19 1.19

.00001 1.35 1.52 1.54 1.54 1.54 1.64 1.61 1.64 1.75 1.75

Table 6: Speedups Sd and SA1 for problem (2) with Nx = 101

Kd KA1 KA2

� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 3 7 12 46 81 294 13 21 64 94 160

.01 3 3 3 7 12 43 4 5 10 14 22

.001 3 3 3 3 3 6 3 3 3 3 4

.0001 2 2 2 2 2 2 3 3 3 3 3

.00001 2 2 2 2 2 2 2 2 2 2 2

Table 7: Number of iterations for problem (2) for Nx = 501

Sd = td=tA2 SA1 = tA1=tA2
� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 .38 .27 .10 .07 .03 .91 1.03 1.35 1.61 3.45

.01 1.16 1.03 .58 .43 .28 1.33 1.16 1.35 1.64 3.70

.001 1.47 1.59 1.69 1.67 1.25 1.67 1.79 1.85 1.85 2.78

.0001 1.09 1.18 1.25 1.25 1.25 1.12 1.30 1.35 1.35 1.35

.00001 1.43 1.52 1.61 1.61 1.61 1.61 1.69 1.72 1.75 1.75

Table 8: Speedups Sd and SA1 for problem (2) for Nx = 501

in Tables 6 and 8 for � = :0001 are due to the fact that KA2 = 3, whereas Kd = KA1 = 2.

In the case in Table 6, this occurred since, after 2 iterations, A2 had only reduced the error

to 9:9� 10�5. After 3 iterations it was 6:6� 10�9. If we had chosen an error of 5:0� 10�6

rather than 1:0� 10�5 this anomaly would not have appeared. This is shown in Tables 9

and 10. In this case, however, a similar problem arises for the case � = :00001. A similar

remark holds for the Nx = 501 case.

11

Kd KA1 KA2

� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 4 8 13 50 90 341 12 18 39 47 56

.01 3 3 3 8 14 49 4 4 7 8 9

.001 3 3 3 3 3 6 3 3 3 3 4

.0001 3 3 3 3 3 3 3 3 3 3 3

.00001 2 2 2 2 2 2 3 3 3 3 3

Table 9: Number of iterations for problem (2) for Nx = 101

Sd = td=tA2 SA1 = tA1=tA2
� n h .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

.1 0.51 0.37 0.18 0.15 0.13 1.11 1.26 2.11 3.38 10.71

.01 1.11 1.21 0.75 0.67 0.60 1.27 1.35 1.99 2.98 9.10

.001 1.40 1.52 1.58 1.57 1.23 1.60 1.70 1.74 1.74 2.48

.0001 1.35 1.45 1.50 1.49 1.49 1.54 1.62 1.66 1.65 1.65

.00001 0.97 1.04 1.08 1.07 1.08 1.10 1.16 1.19 1.18 1.18

Table 10: Speedups Sd and SA1 for problem (2) with Nx = 101

References

[1] Igor P. Boglaev, A numerical method for a quasilinear singular perturbation problem of

elliptic type. U.S.S.R. Comput. Maths. Math. Phys., 28, pp. 492-502, (1988).

[2] Igor P. Boglaev, Numerical method for quasilinear parabolic equation with boundary

layer, U.S.S.R. Comput. Maths. Math. Phys., 30, pp. 716-726, (1990).

[3] Igor P. Boglaev, Vadim V. Sirotkin, Domain decomposition technique for singularly per-

turbed problems and its parallel implementation. In: Proc. 13th IMACSWorld Congress

on Computation and Applied Mathematics, Dublin, (J.J.H. Miller, R. Vichnevetsky,

eds.), pp. 522-523, (1991).

[4] Paul A. Farrell, Igor P. Boglaev, Vadim V. Sirotkin, Solution of singular perturbation

problems via the domain decomposition method on serial and parallel computers, in

Proc. of BAIL 6. Proc. of Sixth International Conference on Boundary and Interior

Layers - Computational and Asymptotic Methods (BAIL VI), Front Range Press, Cop-

per Mountain, pp. 92-93, (1992).

12

