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Abstract. Boundary value problems for singularly perturbed semilinear elliptic equations are consid-
ered. Special piecewise-uniform meshes are constructed which yield accurate numerical solutions irrespective

of the value of the small parameter. Numerical methods composed of standard monotone �nite di�erence

operators and these piecewise-uniform meshes are shown theoretically to be uniformly (with respect to the
singular perturbation parameter) convergent. Numerical results are also presented, which indicate that in

practice the method is �rst order accurate.
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1. Introduction. Partial di�erential equations with a small parameter " multiplying

the highest order derivative terms are said to be singularly perturbed. Singularly perturbed

di�erential equations are all pervasive in applications of mathematics to problmes in the

sciences and engineering. Among these are the Navier-Stokes equations of 
uid 
ow at high

Reynolds number, the drift-di�usion equations of semiconductor device physics [17, 12],

the Michaelis-Menten theory for enzyme reactions [16], and mathematical models of liquid

crystal materials and of chemical reactions [25].

The use of classical numerical methods for solving such problems may give rise to

di�culties when the singular perturbation parameter " is small. In particular, methods

based on centered di�erences or upwinded di�erences on uniform meshes yield error bounds,

in the maximum norm, which depend on an inverse power of ". Similarly Brandt and

Yavneh [1] demonstrated that anisotropic arti�cial viscosity in the �rst-order upwind �nite-

di�erence scheme may result in inaccurate solutions, when "=h = O(1), where h is the

mesh width. Two alternative approaches may be taken to the resolution of this problem.

Either additional information about the solution may be used to produce accurate e�cient

methods, which may involve a priori modi�cation of the mesh or operator, or an attempt

may be made to produce a postiori adaptive methods or black box methods.

The latter approach leads to codes that are designed to handle a wider variety of prob-

lems than non-adaptive codes, usually at the expense of greater execution time. Moreover,

such methods are less suitable than non-adaptive codes to implementation in a parallel

environment. This is because the adaption process inherent in a posteriori methods, in-

troduces sequentiality to the solution process, which is absent in the a priori case. The
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former approach uses physical or mathematical knowledge about the problem to enhance

the solution strategy. Such methods are widespread in the literature. These include �tted

�nite di�erence methods, �nite element methods using special elements such as exponential

elements, and methods which use a priori re�ned or special meshes. Examples of these

include methods for convection-di�usion problems devised by the British Central Electric-

ity Generating Board [11], 
uid 
ow in aerodynamics [3], semiconductor device physics

[18, 4, 15, 14] and chemical reactions [24].

It is of theoretical and practical interest to consider numerical methods for such prob-

lems, which exhibit "-uniform convergence, that is, numerical methods for which there exists

an N0, independent of ", such that for all N � N0, where N is the number of mesh elements,

the error constant and rate of convergence in the maximum norm are independent of ". Thus

a numerical method is said to be "-uniform of order p on the mesh 
N = fxi; i = 0; 1; : : : ; Ng

if there exists an N0 independent of " such that for all N � N0

sup
0<"�1

max

N

ju(x)� uN (x)j � CN�p;

where u is the solution of the di�erential equation, uN is the numerical approximation to

u, C and p > 0 are independent of " and N .

Singularly perturbed boundary value problems for linear elliptic equations, which re-

duce for " = 0 to zero-order equations, were examined in [10, 19, 20, 21, 22]. For such

problems "-uniform methods consisting of exponentially �tted �nite di�erence operators on

uniform meshes were thoroughly investigated and applied successfully to ordinary di�eren-

tial equations in [2, 8] and to linear partial di�erential equations in [10, 19, 20, 21].

In [6, 13] it is shown that it is impossible to �nd an exponentially �tted �nite di�erence

operator on a uniform rectangular mesh which yields an "-uniform numerical method for a

certain class of one-dimensional semilinear di�erential equations. In this paper "-uniform

numerical methods are constructed for a class of semilinear problems, using classical �nite

di�erence operators on special piecewise-uniform meshes. Thus "-uniform methods can

be constructed on special piecewise uniform meshes even if it is not possible on uniform

meshes. An added advantage of standard di�erence methods on a priori re�ned meshes over
exponentially �tted methods arises from the non-linear nature of the di�erence schemes.

These must be solved using an iterative technique. In the case of exponentially �tted

methods, such as those in [2], assembly of the iteration matrix involves the evaluation of

exponential or related hyperbolic functions in each iteration, since the �tting factor depends
on the solution. Re�ned mesh methods such as those described here do not su�er from this

disadvantage.

In x2 the continuous problem is formulated and bounds on the derivatives of the solution

are given. In x3, a nonlinear �nite di�erence method is constructed which is "-uniform. In x4

this method is linearized by means of continuation, and it is shown that the resulting linear

�nite di�erence method is still "-uniform. Finally, in x5, numerical results are presented

which support these theoretical results and show that in practice the methods are "-uniform

and are �rst order accurate.

2. Problem formulation. Consider the Dirichlet problem for the semilinear elliptic

equation
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Lu(x) � "2L2u(x) + "L1u(x)� g
�
x; u(x)

�
= 0; x 2 
;(2.1)

u(x) = �(x); x 2 @
:

on the n-dimensional in�nite strip 
 =
n
x 2 <n; 0 < x1 < d

o
, where

L2 �
nX

r;s=1

ars(x)
@2

@xr@xs
+

nX
r=1

br(x)
@

@xr
� c(x)

L1 �
nX

r=1

b1r(x)
@

@xr
� c1(x)

are linear di�erential operators. The more general case, where the coe�cients of L1 and L2
depend on u(x), is dealt with in [13]. The coe�cients ars(x); br(x); c(x); b

1
r(x); c

1(x); r; s =

1; :::; n; and the functions g(x; u); �(x) are assumed to be su�ciently smooth on the sets
�
; �
�< and @
 respectively, and to satisfy the conditions

a0

nX
r=1

�2r �
nX

r;s=1

ars(x)�r�s � a0
nX

r=1

�2r ; x 2 


a0 > 0; c(x); c1(x) � 0; x 2 �


The parameter " takes arbitrary values in the half-open interval (0; 1]:

In addition, it is assumed that the function g(x; u) satis�es the condition

@

@u
g(x; u)� g0 > 0; (x; u) 2 �
� [�M1;M1](2.2)

where M1 is a su�ciently large number. Throughout this paper, M and m (sometimes

subscripted) denote positive constants that are independent of ", and in the case of discrete

problems also independent of the mesh. A function u 2 C2(
); continuous and bounded on
�
; is a solution of the boundary value problem (2.1) if it satis�es (2.1) on 
:

We shall �nd it useful later to use the formal notation,

L
�
f(x; w)

�
u(x) =

�
"2L2 + "L1

�
u(x)� f

�
x; w(x)

�
:

In this notation the operator in (2.1) is given by

Lu(x) � L
�
g(x; u)

�
u(x):
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Furthermore

L
�
g(x; v)

�
u(x) �

n
"2L2 + "L1

o
u(x)� g

�
x; v(x)

�
;

where v = v(x); v 2 C1 (
) : The following lemma is proved in [9, Ch. 4, x8.1].

Lemma 2.1. Let wi 2 C2(
) \ C0(�
) for i = 1; 2 and x 2 �
: Suppose that the
inequalities

L
�
g(x; u)

�
w1(x) � Lu(x) � L

�
g(x; u)

�
w2(x)

hold for all x such that

w1(x) > u(x) > w2(x):

Then, for all x 2 �
; the function u satis�es the following inequalities

min

�
w1(x);�osc[w1j
] + min

@

�

�
� u(x) � max

�
w2(x); osc[w2j
] + max

@

�

�
;

where osc[vj
] is the oscillation of v(x) on 
, that is the di�erence between essential max
 v(x)
and essential min
 v(x).

Using this lemma it can be shown that

ju(x)j �M2; x 2 �
;(2.3)

where

M2 = max

�
g�10 max

�

jg(x; 0)j;max

@

j�(x)j

�
:

For the solution of a semilinear boundary value problem to be unique, it is necessary that,

for each value of "; max�
 juj and max�
 jruj are bounded see [9, Ch. 4]. Since the operator

containing second order derivatives can be written in divergence form, the estimate of jruj

depends only on max�
 juj; "; a0; a
0 and on the distance to @
: In a neighbourhood of @


it depends also on j�j
(2)


 [9, Ch. 4, Theorem 4.1].

Assume that the data of Problem (2.1) satisfy

ars; br; c; b
1
r; c

1 2 C`�1+�(�
); g 2 C`�1+�(�
� [�M2;M2]);(2.4)

� 2 C`+�(@
); r; s = 1; :::; n; `� 2; � > 0

Then u 2 C`+�(�
) (see [9]).

We are now in a position to state the following bounds on u(x) and its derivatives:

Theorem 2.2. [13, Theorem 4.1, pg. 110] Suppose that the data of Problem (2.1)
satisfy the bound (2.2) and the smoothness conditions (2.4). Then, for " 2 (0; 1];

ju(x)j �M2; x 2 �
 and
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����� @
j�j

@x�
u(x)

����� �M"�j�j; j�j � `; x 2 �
; j�j = �1 + : : :�n;(2.5)

@j�j

@x�
�

@j�j

@x�11 @x�22 : : :@x�nn
;

where � = (�1; �2; : : : ; �n) and j�j = �1 + �2 + : : :+ �n.
In what follows, more precise information on the behaviour of the solution of (2.1) is

needed. To obtain this, the solution is written in the form

u(x) = U(x) + V (x); x 2 �
(2.6)

where U and V are the regular and singular parts respectively of the solution u of (2.1).

Estimates of U and V are now derived separately.

The function U is the solution of the equation L
�
U(x)

�
= 0; x 2 
 with boundary

values U0 on @
: On �
, U0 is the solution of the equation g
�
x; U0(x)

�
= 0: Under the

condition

g 2 C`1(�
� [�M3;M3]); `1 � 1;(2.7)

where M3 is a su�ciently large number, U0 satis�es

����� @
j�j

@x�
U0(x)

����� �M; x 2 �
; j�j � `1:(2.8)

On �
, U can be written as a sum of functions U = U0 + v, where v is the solution of

L
�
ĝ(x; U; U0)

�
v(x) = F1

�
x; U0

�
; x 2 
; v(x) = 0; x 2 @
(2.9)

where

ĝu(x; v1; v2) �

Z 1

0

@

@u
g(x; �v1+ (1� �)v2)d�;

and

F1

�
x; v

�
� �

n
"2L2 + "L1

o
v(x):

Under condition (2.7), it can be shown that v satis�es

����� @
j�j

@x�
v(x)

����� �M"1�j�j; x 2 �
; j�j � `1 � 2(2.10)
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which is similar to (2.5). From inequalities (2.8) and (2.10), the required bounds on the

derivatives of U are obtained:

����� @
j�j

@x�
U(x)

����� �M"1�j�j; x 2 �
; j�j � `1 � 2:(2.11)

The function V is the solution of

L
�
ĝ(x; u; U)

�
V (x) x 2 
; V (x) = �(x)� U(x); x 2 @
:(2.12)

Let m1 be a su�ciently small number satisfying

g0 � a0(m1)
2 �max

�


h
jb1(x)j+ jb11(x)j

i
m1 � m2g0;(2.13)

where m2 2 (0; 1) is arbitrarily small. It follows from the maximum principle that

jV (x)j �M exp
�
�m3"

�1d(x)
�
; x 2 �
;(2.14)

where m3 � m1 and d(x) is the distance from x to @
.

With the change of variables � = �(x); �r = "�1xr; r = 1; :::; n; (2.14) leads to

�����@
j�j

@��
~V (�)

����� �M exp
�
�m3

~d(�)
�
; � 2

�~
:

where ~d(�) is the distance from � to @ ~
, and ~
 = �(
) is a region of diameter O(1="). From

this estimate the inequality

����� @
j�j

@x�
V (x)

����� �M"�j�j exp
�
�m3"

�1d(x)
�
; x 2 �
(2.15)

follows.

The bounds on the derivatives
�
@j�j=@x�11 :::@x�nn

�
V (x) for �1 < j�j are now made more

precise. Di�erentiating the equation in (2.12) with respect to xr; r = 2; :::; n; and putting

V (r) = (@=@xr)V; it follows that

L
�
gu(x; v)

�
V (r)(x) = F2

�
x; u; U; V

�
; x 2 
;(2.16)

where F2 comprises the terms of the derivative of (2.12) not contained in L
�
gu(x; v)

�
V (r)(x).

From (2.11) and (2.15) the inequality
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jF2
�
x; u; U; V

�
j �M exp

�
�m3"

�1d(x)
�
; x 2 �


is obtained. Furthermore, similarly to (2.15), the derivatives

 
@j�j

@x�

!
V (r)(x) =

 
@j�j+1

@xr@x�

!
V (x)

satisfy

����� @
j�j

@x�
V (r)(x)

����� �M
h
"��1 + "1�j�j

i
exp

�
�m3"

�1d(x)
�
; x 2 �
(2.17)

Thus the following theorem holds

Theorem 2.3. Suppose that the data of Problem (2.1) satisfy the bound (2.2) and the
smoothness conditions (2.4) and (2.7) with ` � 5 and M2 = M3: Then, for " 2 (0; 1]; the
bounds (2.11) and (2.17), with 0 � j�j � 3; hold for the regular and singular components
U; V of the solution u de�ned in (2.6).

3. Nonlinear �nite di�erence methods. Using the results of Theorem 2.2 �nite

di�erence methods are now constructed for Problem (2.1). On �
 the mesh

�
N = �!1 � !2 � :::� !n(3.1)

is introduced, where �!1 is some mesh on the interval [0; d] of the x1-axis and !r is a uniform

mesh on the xr-axis with step size hr; r = 2; :::; n: De�ne hi1 = xi1 � xi�11 ; xi�11 ; xi1 2

�!1; h1 = maxi h
i
1; h = maxr hr; r = 1; :::; n: Let N1 denote the number of nodes in the

mesh !1; Nr = 1=hr, r = 2; :::; n, N = minrNr; r = 1; :::; n; and M = Nh < 1: It is

assumed hereafter that

a1;r(x) � 0; x 2 �
; r = 2; :::; n:(3.2)

Hence no mixed �nite di�erences involving partial di�erences in the x1 direction occur.

On the uniform meshes !r; r = 2; :::; n; the following �rst order �nite di�erences are

de�ned

D+
r z(x) =

�
z(x+ erhr)� z(x)

�
=hr;

D�
r z(x) =

�
z(x)� z(x� erhr)

�
=hr;

where er is the unit vector along the xr-axis. The following second order �nite di�erences

are also required on these meshes
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�2rz(x) = (D+
r �D�

r )z(x)=hr;

D+
r D

+
s z(x) = D+

r

�
D+
s z(x)

�
;

D+
r D

�
s z(x) = D+

r

�
D�
s z(x)

�
;

D�
r D

+
s z(x) = D�

r

�
D+
s z(x)

�
;

D�
r D

�
s z(x) = D�

r

�
D�
s z(x)

�
:

On the non-uniform mesh !1 �rst and second order �nite di�erences, for each x = xi =�
xi1; x2; :::; xn

�
2 
N ; are de�ned by

D+
1 z(x) =

�
z(xi+1)� z(xi)

�
=hi1

D�
1 z(x) =

�
z(xi)� z(xi�1)

�
=hi�11

�21z(x) = 2
�
D+
1 �D�

1

�
z(x)=

�
hi1 + hi�11

�

The �nite di�erence method for Problem 2.1, on the mesh �
N ; is then de�ned by

LhuN (x) = 0; x 2 
N ; uN (x) = �(x); x 2 @
N(3.3)

where 
N = 
 \ �
N and

Lhz(x) �
n
"2Lh

2 + "Lh
1

o
z(x)� g (x; z(x))

Here

Lh
2 �

nX
r=1

arr(x)�
2
r +

nX
r;s=2;r 6=s

2�1
h
a+rs(x)(D

+
r D

+
s +D�

r D
�
s )

+ a�rs(x)(D
+
r D

�
s +D�

r D
+
s )
i
+

nX
r=1

�
b+r (x)D

+
r + b�r D

�
r

�
� c(x)(3.4)

Lh
1 �

nX
r=1

h
b1+r (x)D+

r + b1�r (x)D�
r

i
� c1(x)

where v+(x) =
�
v(x) + jv(x)j

�
=2 and v�(x) =

�
v(x)� jv(x)j

�
=2:

By analogy with L, we de�ne the formal notation
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Lh
�
f(x; w)

�
z(x) = ("2Lh

2 + "Lh
1)z(x)� f(x; w(x)):

and it is clear that

Lhz(x) = Lh(g(x; z))z(x):

Under the assumptions (3.2) and the additional assumption

jars(x)j

hrhs
<

1

n � 1
min

�
arr(x)

h2r
;
ass(x)

h2s

�
; x 2 �
; r; s = 1; :::; n; r 6= s(3.5)

the operator Lh
2 is monotone on 
N for any distribution of nodes in �!1:

The �nite di�erence method (3.3) is now examined. The error w(x) = uN(x)�u(x); x 2
�
N ; satis�es

Lh
�
ĝu(x; uN ; u)

�
w(x) = Fh

1

�
x; u

�
; x 2 
N ; w(x) = 0; x 2 @
N(3.6)

where

Fh
1

�
x; u

�
�
n
"2
�
Lh
2 � L2

�
+ "

�
Lh
1 � L1

�o
u(x)

and ĝ is as in (2.9). The operator Lh
�
ĝu(x; uN ; u)

�
is monotone on �
N ; for any distribution

of nodes in �!1; provided that conditions (3.2) and (3.5) are ful�lled.

However, these conditions are not su�cient to guarantee that the �nite di�erence

method (3.3) is "-uniform. To obtain an "-uniform numerical method a special mesh �
?
N ,

which is re�ned or condensed in the boundary layer, is required. A piecewise uniform

mesh having this property is now constructed. For r = 2; :::; n the uniform mesh !r is

used, as before. In the interval [0; d] of the x1-axis a special mesh �!?1 is de�ned as fol-

lows. The interval [0; d] is partitioned into three subintervals [0; �]; [�; d��]; [d��; d] where

� � min
h
1
4
d;M" lnN1

i
; M >

h
a0(g0)

�1
i 1
2

: A uniform mesh is constructed using N1=4

points in each of [0; �]; [d� �; d] and N1=2 points in [�; d� �]:

Using the technique in [23] it is possible to prove that the �nite di�erence operator Lh

in (3.3) on the mesh �
?
N gives an "-uniform method. In particular the following "-uniform

error estimate holds

ju(x)� uN(x)j �MN�1 lnN; x 2 �
?
N :(3.7)

The above results are summarized in the following theorem :

Theorem 3.1. Suppose that the data of Problem 2.4 satisfy the conditions (2.2), (2.4)
and (2.7) and the assumptions (3.2) and (3.5). Suppose, also, that with " 2 (0; 1] and
0 � j�j � 3 the bound (2.5) holds for the solution u and its derivatives and that the bounds
(2.11), (2.17) hold for its regular and singular components U; V respectively. Then, the
numerical method comprising the nonlinear �nite di�erence operator Lh in (3.3) on the
mesh �
?

N is "-uniform and the "-uniform error estimate (3.7) holds.
This theorem shows that in principle the problem is solved. In practice, however we

are still faced with the problem of solving a nonlinear system of algebraic equations. This

is dealt with in the next section.
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4. Iterative �nite di�erence methods. Throughout this section it is assumed that

(3.2) is satis�ed. Analogously to Lh we de�ne

Lht

�
f(x; w); p

�
z(x; t) �

�
"2Lh

2 + "Lh
1 � pD+

t

�
z(x; t)� f (x; w(x; t)) :

where the positive parameter t, which plays the part of a continuation parameter, will be

determined later, and D+
t is de�ned by

D+
t z(x; tj) = (tj � tj�1)

�1(z(x; tj)� z(x; tj�1)):

We now consider the iterative �nite di�erence method

Lht

�
g(x; uo); p

�
uN(x; t) = 0; (x; t) 2 G�

N ; uN (x; t) = �(x; t); (x; t) 2 @G�
N ;(4.1)

where uo(x; t) is the old value of uN de�ned by uo(x; tj) = uN(x; tj�1), and where the mesh

G�
N is de�ned by

�G�
N = �
�

N � �!t(4.2)

with �!t being some mesh having K+1 points in the interval [0; T ], with t0 = 0 and tK = T .

The boundary of this mesh is de�ned by

@G�
N = @G�

0;N [ @G�
d;N [ @G

�;0
N

where

@G
�;0
N = f(x; t) 2 �G�

N ; t = 0g; @G�
0;N = f(x; t) 2 �G�

N ; x1 = 0g

and

@G�
d;N = f(x; t) 2 �G�

N ; x1 = dg

The following boundary and initial conditions are imposed

�(x; t) = �(x); (x; t) 2 @G�
0;N [ @G�

d;N ; �(x; t) = �0(x); (x; t) 2 @G
�;0
N ;

where �0(x) is a bounded function and, in general, � 6= �0.

The �nite di�erence method (4.1) is implicit. At each time level, the function uN (x; t)

is the solution of a discrete linear boundary value problem. Note that the operator "2Lh
2 +

"Lh
1 � pD+

t is monotone on the mesh G�
N for any distribution of the mesh points in �!t.

To investigate the convergence of this method, note that the error function w(x; t) =

uN (x; t)� u(x); (x; t) 2 G
�
N is the solution of the discrete problem

Lht

�
ĝu(x; u0; u); P (x; t; uo(x; t); u(x)

�
w(x; t) = Fh

1 (x; u); (x; t) 2 G�
N ;(4.3)

w(x; t) = �(x; t)� u(x) = �0(x)� u(x); (x; t) 2 @G
�;0
N ;
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w(x; t) = 0; (x; t) 2 @G�
0;N [ @G�

d;N ;

where Fh
1 is as in (3.6), P (x; t; v1; v2) = p��j ĝu(x; v1; v2), and �j = tj � tj�1 . The operator

Lht

�
ĝu(x; u0; u); P (x; t; uo(x; t); u(x)

�
is monotone if

min
�G�

N

P (x; t; uo(x; t); u(x))� 0:

The error w(x; t) is estimated using a discrete maximum principle (see for example

[23]). This yields the discrete analogue of (2.3)

juN(x; t)j � max

"
g�10 max

�
�

jg(x; 0)j;max
@G�

N

j�(x; t)j

#
:

From this inequality and (2.3), we obtain

jĝu(x; uo(x; t); u(x))j �M; (x; t) 2 G
�
N :(4.4)

The mesh �!t is chosen to be uniform. Then �j = ht for all j. The parameter p is chosen

su�ciently large or the time step ht is chosen su�ciently small so that

P (x; t; uo(x; t); u(x)) = p� htĝu(x; uo(x; t); u(x))� p0 > 0; (x; t) 2 G�
N :(4.5)

Using a maximum principle, the following error estimate is obtained from (4.3)

jw(x; t)j �M(N�1 lnN + e�m4t); (x; t) 2 G
�
N ;(4.6)

if the constant m4 is su�ciently small to ensure that

[min
�G�

N

ĝu(x; uo(x; t); u(x))]� h�1t (exp(m4ht)� 1)max
�G�

N

P (x; t; uo(x; t); u(x))

� g0 � h�1t (exp(m4ht)� 1)(p+ htM) � 0:(4.7)

Thus we have

ju(x)� uN(x; t)j �M(N�1 lnN + qt=ht); (x; t) 2 G�
N ;(4.8)

where q = exp(�m4ht) and hence

ju(x)� uN (x; T0)j �M(N�1 lnN); x 2 �
�
N ;(4.9)

where

T0 � m�1
4 ln(N(lnN)�1):



12 P.A. FARRELL, J.J.H. MILLER, E. O'RIORDAN, AND G.I. SHISHKIN

The number of iterations required is

K = T0=ht =
ln(N(lnN)�1)

htm4

�M lnN:(4.10)

The above results are summarized in the following theorem.

Theorem 4.1. Assume that the estimates (2.11), (2.17) for j�j � 3 are satis�ed by
the solution of problem (2.1). Assume also that the conditions (2.3), (3.2) and (3.5) are
satis�ed. Then the solutions of (4.1) converge "-uniformly to the solution of Problem 2.1.
The error estimate (4.9) is valid. The number of iterations required is given in (4.10).

5. Numerical Results. In this section numerical results are given for the following

one dimensional examples of the semilinear problem (2.1)

"2
d2

dx2
u(x)� g(x; u(x)) = 0; x 2 (0; 1);(5.1)

u(0) = A u(1) = B

where either

g(x; u) = u� u3(5.2)

or

g(x; u) = u� u2:(5.3)

Various choices of A and B in the boundary conditions are examined.

The central di�erence operator

LhuN � "2�2xuN � g(x; uN) = 0; uN(0) = u(0) uN(1) = u(1)

on a special piecewise-uniform mesh !�1 is used. The mesh !�1 is constructed by dividing

the interval into three subintervals [0; �]; [�; 1� �]; [1� �; 1] where

� � minf0:25; " lnNg

A uniform mesh is used on each subinterval, taking N=4; N=2, and N=4 points in the

respective intervals.

The nonlinear �nite di�erence method fLh; !�1g is linearized using the continuation

method (with the parameter p = 1) given in x4. That is

Lh
t uN � "2�2xuN(x; tj)� g(x; uN(x; tj�1))�D+

t uN (x; tj) = 0; j = 1; � � �K

uN (0; tj) = u(0); uN (1; tj) = u(1) for all j;
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uN (x; 0) = uinit(x)

Various starting values uinit(x) are chosen. The number of iterations K and the choice of

uniform time step ht = tj � tj�1 are discussed below. With the de�nition

e(j) � max
1�i�N

juN(xi; tj)� uN(xi; tj�1)j=ht; for j = 1; 2; � � � ; K;(5.4)

the time step ht is chosen su�ciently small so that

e(j) � e(j � 1); for 1 < j � K(5.5)

and the number of iterations K is chosen such that

e(K) � TOL(5.6)

where TOL is some prescribed small tolerance.

The numerical solution is obtained as follows:

Start with ht = 0:0625. If, at some value of j, (5.5) is not satis�ed then halve the time

step until (5.5) is satis�ed. Continue the iterations until either (5.6) is satis�ed or until

K = 90. If (5.6) is not satis�ed, then repeat the entire process starting with ht = 0:03125 .

The resulting values of uN (x;K) are taken as approximations to the solution of the

continuous problem (5.1).

The problem is solved on a sequence of meshes, withN = 8; 16; 32; 64; 128; 256; 512; 1024

and for " = 2�n; n = 1; 2; � � �jred, where jred is chosen so that " is a value at which the rate

of convergence stabilizes, which normally occurs when, to machine accuracy, we are solving

the reduced problem.

The errors juN(xi; K)� u(xi)j are approximated on each mesh for successive values of

" by e";N (i) = juN(xi; K)� uI(xi; K)j, where uI(x;K) is de�ned by linear interpolation on

each subinterval [yj�1; yj ] by

uI(x;K) = u�(yj�1; K) + (u�(yj ; K)� u�(yj�1; K))
x� yj�1

yj � yj�1
; 1 � j � 1024

where the nodal values fu�(yj ; K)g1024j=0 are obtained from the solution of the �nite di�erence

method fLh
t ; !

�
1 � !tg with N = 1024. For each " and each N the maximum nodal error is

approximated by

E";N = max
i

e";N (i)

For each N , the "-uniform maximum nodal error is approximated by

EN = max
"

E";N

In what follows all calculations were carried out in double-precision FORTRAN 77 on an

Hewlett-Packard/Apollo 730.
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A numerical method for solving (5.1) is "-uniform of order p on the mesh 
N = fxi; i =

0; 1; : : : ; Ng if

sup
0<"�1

max

N

ju(x)� uN (x;K)j � CN�p;

where u is the solution of (5.1), uN is the numerical approximation to u, C and p > 0 are

independent of " and N . An approximation to p, the "-uniform rate of convergence, was

determined using a variation of the double mesh method described in [5]. This involves

calculating the double mesh error

D";N = max

N

juN (xi; K)� uI2N(xi; K)j;

which is the di�erence between the values of the solution on a mesh of N points and the

interpolated value for the solution, at the same point, on a mesh of 2N points. For each

value of N the quantities

DN = max
"

D";N ; pN = log2

�
DN

D2N

�
;

are computed. The values of pN are the approximations to p.

Tables 5.1-5.6 and 5.8 present numerical results for centered di�erences on the special

mesh G�
n for the problem (5.1),(5.2). Table 5.1 gives the errors E";N and EN for problem

(5.1),(5.2) with boundary conditions u(0) = 1 ; u(1) = 1 and initial guess uinit = 0. Tables

5.2-5.6 present summary results for problem (5.1),(5.2), for various boundary values and

initial guesses. In all of these examples, it is clear that the central di�erence scheme on

the special mesh G�
N yields an "-uniform method. It should be noted that, in the case of the

numerical examples presented here, g(u; x) does not satisfy the condition (2.2), and thus

the method may in practice be "-uniformly convergent even in cases where this condition

is not satis�ed. Moreover, the computed rate of "-uniform convergence is approximately 1,

independent of the choice of the initial guess and of the boundary conditions. This indicates

that the theoretical result given in (4.10) may be a conservative estimate of the rate of "-

uniform convergence. To verify this further we give in Table 5.7 below the local theoretical

rates of "-uniform convergence, corresponding to those in Tables 5.2-5.6. It is clear that

the actual computed rates in Tables 5.2-5.6 are substantially better, in all cases than the

theoretical rates.

We should also remark that, as shown in [7, pp. 124-127], there are multiple solutions

to this problem for the boundary conditions, u(0) = 1 ; u(1) = 1. The stable solution has

boundary layers at both end-points and, for su�ciently small ", approaches the reduced

solution u(x) � 0 in the interior. On the other hand, it is clear that u(x) � 1 is also a

solution, in this case an unstable one. We remark that for all the initial guesses discussed

above, the numerical solutions converge to the stable solution, and furthermore the com-

puted rate of "-uniform convergence obtained is the same. With the initial guess uinit = 1

however, it converges to the unstable solution after one iteration as would be expected. On

the other hand, it is of some interest, that for initial guesses as close to 1 as uinit = :98, the

solutions converge to the stable solution, with essentially the same "-uniform rate as the

above examples. The results for this case are given in Table 5.8.
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Boundary Conditions: u(0) = 1 ; u(1) = 1

Initial Guess : uinit = 0

Number of Mesh Points N

" 8 16 32 64 128 256 512

1/ 2 .000055 .000013 .000003 .000001 .000000 .000000 .000000

1/ 4 .000037 .000634 .000057 .000014 .000003 .000001 .000000

1/ 8 .006885 .001755 .000440 .000110 .000027 .000006 .000001

1/ 16 .006907 .002070 .000444 .000111 .000027 .000007 .000001

1/ 32 .011231 .003309 .000878 .000219 .000054 .000013 .000003

1/ 64 .012372 .006810 .001777 .000446 .000111 .000026 .000005

1/ 128 .016902 .011381 .003402 .000899 .000223 .000053 .000011

1/ 256 .033105 .011972 .005121 .001780 .000443 .000106 .000021

1/ 512 .056008 .012978 .005182 .001950 .000673 .000226 .000043

1/ 1024 .077146 .021205 .005260 .001952 .000677 .000230 .000081

1/ 2048 .094695 .031616 .007446 .001971 .000679 .000230 .000081

1/ 4096 .108414 .041192 .012061 .002426 .000682 .000230 .000081

1/ 8192 .118767 .049207 .016901 .004247 .000736 .000231 .000081

1/ 16384 .126412 .055532 .021361 .006463 .001373 .000231 .000081

1/ 32768 .131978 .060343 .025123 .008769 .002272 .000409 .000082

1/ 65536 .135994 .063915 .028117 .010900 .003350 .000728 .000108

1/ 131072 .138874 .066527 .030410 .012707 .004469 .001170 .000202

1/ 262144 .140930 .068418 .032123 .014153 .005503 .001694 .000348

1/ 524288 .142394 .069775 .033379 .015264 .006380 .002232 .000544

1/ 1048576 .143433 .070745 .034289 .016095 .007080 .002723 .000767

1/ 2097152 .144171 .071436 .034943 .016704 .007614 .003131 .000985

1/ 4194304 .144693 .071926 .035410 .017143 .008010 .003450 .001173

1/ 8388608 .145062 .072274 .035742 .017458 .008297 .003688 .001321

1/ 16777216 .145323 .072519 .035977 .017681 .008503 .003861 .001433

1/ 33554432 .145508 .072693 .036143 .017840 .008649 .003985 .001514

EN .145508 .072693 .036143 .017840 .008649 .003985 .001514
Table 5.1

Errors E";N and EN for problem (5.1),(5.2)

Boundary Conditions: u(0) = 1 ; u(1) = 1

Initial Guess : uinit = 0

N 8 16 32 64 128 256

EN .145508 .072693 .036143 .017840 0.08649 .003985

pN 0.94 1.02 1.02 1.03 1.04 1.09
Table 5.2

Maximum errors EN and computed rates of convergence pN

The �nal tables 5.9-13 give the corresponding numerical results for the problem (5.1),(5.3).

Again, it may be observed that for all the initial guesses discussed, convergence to the true
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Boundary Conditions: u(0) = 1 ; u(1) = 1

Initial Guess : uinit = :5

N 8 16 32 64 128 256

EN .145674 .072779 .036186 .017861 .008660 .003990

pN .94 1.02 1.02 1.03 1.04 1.09
Table 5.3

Maximum errors EN and computed rates of convergence pN

Boundary Conditions: u(0) = :5 ; u(1) = :7

Initial Guess : uinit = 0

N 8 16 32 64 128 256

EN .093222 .046517 .023123 .011413 .005533 .002549

pN .97 1.03 1.02 1.03 1.04 1.09
Table 5.4

Maximum errors EN and computed rates of convergence pN

Boundary Conditions: u(0) = :5 ; u(1) = :7

Initial Guess : uinit = :5

N 8 16 32 64 128 256

EN .093268 .046541 .023135 .011419 .005536 .002551

pN .97 1.03 1.02 1.03 1.04 1.09
Table 5.5

Maximum errors EN and computed rates of convergence pN

Boundary Conditions: u(0) = :5 ; u(1) = :7

Initial Guess : uinit = u(0) + (u(1)� u(0))x

N 8 16 32 64 128 256

EN .093257 .046535 .023132 .011417 .005536 .002550

pN .97 1.03 1.02 1.03 1.04 1.09
Table 5.6

Maximum errors EN and computed rates of convergence pN

N 8 16 32 64 128 256

pN .4150 .5850 .6781 .7370 7776 .8074
Table 5.7

Theoretical rates of convergence pN from (4.10)

solution occurs and the computed rate of "-uniform convergence of the scheme is essentially

the same, independent of the initial guess.
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Boundary Conditions: u(0) = 1 ; u(1) = 1

Initial Guess : uinit = :98

N 8 16 32 64 128 256

EN .145661 .072771 .036182 .017859 .008659 .003989

pN .94 1.02 1.02 1.03 1.04 1.09
Table 5.8

Maximum errors EN and computed rates of convergence pN

Boundary Conditions: u(0) = 1 ; u(1) = 1

Initial Guess : uinit = 0

N 8 16 32 64 128 256

EN .097937 .048050 .023691 .011648 .005637 .002595

pN 1.06 1.08 1.04 1.04 1.05 1.09
Table 5.9

Maximum errors EN and computed rates of convergence pN

Boundary Conditions: u(0) = 1 ; u(1) = 1

Initial Guess : uinit = :5

N 8 16 32 64 128 256

EN .097873 .048014 .023672 .011638 .005632 .002593

pN 1.06 1.08 1.04 1.04 1.05 1.09
Table 5.10

Maximum errors EN and computed rates of convergence pN

Boundary Conditions: u(0) = :5 ; u(1) = :7

Initial Guess : uinit = 0

N 8 16 32 64 128 256

EN .073090 .036008 .017791 .008755 .004239 .001952

pN 1.05 1.07 1.04 1.03 1.05 1.09
Table 5.11

Maximum errors EN and computed rates of convergence pN

Boundary Conditions: u(0) = :5 ; u(1) = :7

Initial Guess : uinit = :5

N 8 16 32 64 128 256

EN .073034 .035977 .017774 .008747 .004235 .001950

pN 1.05 1.07 1.04 1.03 1.05 1.09
Table 5.12

Maximum errors EN and computed rates of convergence pN
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Boundary Conditions: u(0) = :5 ; u(1) = :7

Initial Guess : uinit = u(0) + (u(1)� u(0))x

N 8 16 32 64 128 256

EN .073063 .035993 .017782 .008751 .004237 .001951

pN 1.05 1.07 1.04 1.03 1.05 1.09
Table 5.13

Maximum errors EN and computed rates of convergence pN
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