
Vi Text Editing

A text editor is used to enter programs, data, or text into new files, as well
as to modify existing files. There are as many different text editors as there
are computer systems. The standard editors on UNIX are vi and ex. The
vi editor is a screen-oriented extension of ex, which is a line-oriented editor.
The ex editor is itself an extension of ed, the original UNIX editor, which is
simple but inconvenient and generally outmoded. Another full-screen editor,
emacs, was developed independently at MIT for the ITS operating system
but is nevertheless becoming quite popular on UNIX systems. In this chapter
we describe display text editing and the usage of vi. A summary of emacs
usage can be found in Appendix 1.
Information in the first six sections will enable you to enter and edit programs
comfortably. The remaining sections will make you an expert and you’ll get
any editing job done much faster.

1 Display Text-Editing Concepts

When you edit a file, the editor creates a text buffer for the temporary storage
of the file you are editing. Your terminal or window displays the contents of
the buffer as you edit. The text displayed is in your current screen or simply
screen. The basic unit of a text file is the character. Consecutive characters
form words, lines, paragraphs, and so on. A file can contain any number of
lines. The screen can be moved forward and backward to view any part of the
file depending on the commands you give the editor through the keyboard.
Since both text and editor commands are entered on the keyboard, every
text editor must have some convention for distinguishing between keystrokes
to be executed as commands and keystrokes to be entered into the buffer
as text. As you will see in this chapter, the vi convention involves defining
different editor modes; emacs takes a different approach and uses control
and escape characters to distinguish between commands and text.

Both editors display a cursor on the screen to indicate the position where
editing will take place in the buffer. This is called the current position.
If you give the command to delete a character, then the character at the
current position, known as the current character, is deleted from the buffer.

1

All insertions, deletions, and other modifications are performed within the
buffer. No changes are made to the actual file unless and until you specifically
request that the buffer be saved to the disk where the file is stored.

Screen editors provide commands to:

• Move the window and move the cursor within the text file

• Insert text

• Delete text

• Substitute specified text with other text

• Search for a given string or pattern

• Cut and paste

• Perform file input and output

2 Getting Started with vi

To edit a file with vi, issue the shell-level command:

vi file

If the file exists, a copy of it will be read into the buffer, and the screen
will display the beginning of the file. If the file does not exist, vi will create
an empty buffer for you to insert and edit new text into. For a new file,
the screen will display all empty lines, each of which is indicated by a tilde
(~) character in the first column. The vi editor uses the tildes to indicate
“lines beyond the end of the buffer.” The tildes are merely a convention; the
characters are not contained in the buffer.

Initially, vi is in the command mode. In this mode, vi considers all
keystrokes as editing commands. To put text into the buffer, issue a com-
mand (for example, i or o) to change to the insert mode (see Section 2.4),
then begin typing the text to be inserted. Text insertion is terminated by
hitting esc, which returns vi to the command mode. In other words, when
you are not inserting text into the buffer, vi is always in command mode.

In the command mode, vi stands ready to receive and carry out your
next command. The vi commands are short and easy to type: They are

2

single-, double-, and multiple-character commands, which are carried out as
soon as they are typed. Some vi commands are terminated by the special
characters esc or return, and most vi commands can be preceded by an
integer value, called a repeat count. The repeat count specifies the number of
times a command is to be performed. We use the variable n to indicate this
repeat count when presenting these commands. If n is omitted it is assumed
to be 1. Typing errors in a vi command can be corrected using input editing
(see Section 1.2).

The vi buffer window is always at least one line less than the total number
of lines on your screen. The bottom line is called the status line and is used
by vi to echo certain commands and to display messages. Any command
beginning with a colon (:) as well as any search command beginning with a
slash (/) (or ?) is echoed on the status line. However, most other commands
are not. Not being able to see what you type in the command mode can take
some getting used to.

When you are finished with the editing session, you need to save the
buffer and get out of vi. You type:

ZZ (save buffer and exit)

If you wish to discard the buffer without updating the disk file, type:

:q!return (quit without saving buffer on disk)

instead of ZZ. The comamnd q without the trailing ! will quit only if the
buffer has not been changed since the last save to disk. Be careful: It’s easy
to miss q and hit w instead. Unfortunately, the vi command:

:w!return (write buffer over file)

writes the file out even if there is a file by the same name on the disk; so
instead of abandoning the unwanted buffer, vi wipes out a file!!!

3 Moving the Screen

In vi and other display editors, the screen makes a portion of the editor
buffer visible. To edit a file, first you must move the screen to that part of
the file where editing will take place. There are a few ways to do this: by
line number, by search, or by browsing.

3

The buffer consists of lines of text numbered sequentially beginning with
line 1. The command:

kG (goto line k)

will position the screen over the buffer so that the kth line is centered on
the screen with the cursor placed at the beginning of the line. G provides
a way to move the screen to any absolute position within the buffer; it also
is possible to move the screen in a relative manner. To move forward and
backward n lines from the current line (line with cursor), nreturn and
n– are used, respectively. The cursor is positioned over the first nonwhite
character (a space, a tab, and so on) of the target line. Sometimes, pressing
return or - (minus sign) repeatedly is a convenient way to move a few lines
forward or backward.

In many cases the line number of the target is not at your fingertips, but
if you know an unambiguous substring of the text, a search command can be
used to locate the target. The vi commands:

/textreturn (forward search)
?textreturn (backward search)

search the buffer for the given text (these commands will be echoed on the
status line). The forward search begins at the current character (at the
cursor) and proceeds forward toward the end of buffer. If the pattern is
found, the cursor will be positioned at the patterns first character. If the
search reaches the end of buffer, it will wrap around to the beginning of
the buffer until the pattern is found or until the search returns to where it
started. A backward search moves in the opposite direction, starting toward
the beginning of the buffer and then wrapping around through the end until
it returns to its starting point. If the pattern is not found, a message “Fail”
will appear on the status line. You can locate multiple occurrences of a
pattern after the first occurrence is found by typing:

n (search for the next match)

which searches in the direction of the previous search command, or by typing:

N (search for the next match)

which searches in the reverse direction of the previous search command.
The third way to position the screen is by browsing around until you find

the section of the buffer you want. The commands:

4

^D (scroll down)
^U (scroll up)

scroll the screen forward and backward, respectively. Smooth scroll is used
if your terminal has this feature, so that you can read the lines as they are
scrolling by. The commands:

^F (forward)
^B (backward)

refresh the screen and give the next and previous screen, respectively. Two
lines of text overlap the last screen to provide reading continuity.

4 Cursor Motion Commands

Once the screen has been positioned over the buffer location you wish to
edit, the cursor must be positioned to the exact line, word, or character you
wish to change. The vi editor has a full complement of commands to move
the cursor. The following commands move the cursor to the first nonwhite
character at the beginning of the target line:

H first line on the current screen
L last line on the screen
M middle line on the screen

In addition:

h moves the cursor left one character on the current line
j moves the cursor down one line onto the same column position or the

last character if the next line is not long enough
k moves the cursor up one line onto the same column position or the last

character if the previous line is not long enough
l moves the cursor right one character on the current line
space works the same as l

5

^ moves the cursor to the beginning of the current line
$ moves the cursor to the end of the current line
w moves the cursor forward one word to the first character of the next

word
e moves the cursor to the end of the current word
b moves the cursor backward one word to the first character that begins

a word

tc moves the cursor to the character just before the next occurrence of the
character c in the current line (T for just after the previous occurrence
of c)

f c moves the cursor to the next (F for previous) occurrence of the char-
acter c in the current line

; (semicolon) repeats the previous f or F command
, (comma) repeats the previous f or F command in the other direction

The f, ;, F, and , combinations are fast ways of moving the cursor in the
current line. If your terminal has arrow keys, they will work the same as h,
j, k, and l, although many prefer the letter keys because they are convenient
for touch typing. Many people find it even easier to use SPACEBAR for l.
To move the cursor to a specific column in the current line use:

k| (cursor to column k)

The command | without a preceding number is equivalent to ^.
The vi editing commands also can move the cursor to sentences, para-

graphs, and sections. To move the cursor backward or forward over a sen-
tence, paragraph or section, use:

(moves the cursor left to the beginning of a sentence
) moves the cursor right to the beginning of a sentence
{ moves the cursor left to the beginning of a paragraph
} moves the cursor right to the beginning of a paragraph
[[moves the cursor left to the beginning of a section
]] moves the cursor right to the beginning of a section

These commands can be combined with commands such as delete to spec-
ify editing actions on words, sentences, paragraphs, and sections. For exam-
ple:

6

d)

deletes everything from the current position up to the beginning of the next
sentence.

5 Typing or Inserting Text

The vi editor uses mode to distinguish between keystrokes meant as com-
mands and keystrokes meant as text. While the editor is in the insert mode,
all keystrokes are considered text and are inserted into the buffer until you
press esc. Several commands put vi into the insert mode. The most fre-
quently used command is:

iany number of
lines of text to be inserted
terminated by the first escape character esc

This command inserts the text just before the cursor (if you use a instead of
i, the text will be inserted to the right of the cursor). After you press i, vi
goes into the insert mode. From that point on, characters typed go into the
buffer and are not considered to be commands. If, for example, you were to
type i and then ZZ, the editor would insert ZZ into the buffer. If you type
ZZ in the command mode, you would leave the editor.

Text can be inserted more than one line at a time, and lines can be
separated by pressing return. As you type, vi displays either what you
type over the existing text on the screen or pushes the existing characters
to the right as you type in new text. The exact method depends on your
terminal. If the inserted text overwrites existing characters on the screen, do
not be alarmed. These characters are still in the buffer. When you end your
insertion by pressing esc, the screen will display the inserted text correctly.
Typing mistakes can be corrected in the usual manner, although you may
choose to ignore the error and correct it later after returning to the command
mode.

To insert one or more lines of text after the current line, type:

oanytextesc

This sequence opens up a blank line below the current line for the insertion.
If an uppercase O is used, the lines are inserted above the current line. Also:

7

Ianytextesc

and

Aanytextesc

insert text at the beginning (before first nonwhite character) and the end of
the current line, respectively.

6 Inserting Special Characters

Many special characters cannot be entered into the buffer directly. For exam-
ple, esc terminates the insert mode, ^H erases the previous character typed,
and the interrupt character (usually delete or ^C) terminates insertion as
well. return separates lines but is not entered into the buffer as a charac-
ter. To enter any of these characters into the buffer, you must precede them
with ^Vwhich takes away the special meaning of the next character typed
and forces vi to insert the character(s) literally: ^V escapes or quotes the
next character. Thus:

i^V^H^VESC ESC

inserts the two characters ^H and esc. One instance where special characters
are needed is in the .login file, where you may wish to redefine the UNIX
shell-level erase and interrupt characters.

7 Erasing or Deleting Text

The vi editor provides many convenient ways to delete text from the buffer.
To delete a few characters, the commands:

nx (delete next n characters)
nX (delete previous n characters)

can be used. The value of n can be arbitrarily large, and an omitted n is
assumed to be 1. The command:

D (delete to end of line)

8

deletes from the cursor to the end of the line.
Joining two lines together is actually a deletion. To join the lines, you

must delete the character at the end of the first line that marks the separation
between it and the following line. To delete the line separation and join two
lines in this manner, use:

J (join next line)

The vi editor will not let two words run together; it will include a space
between the last character of the first line and the first character of the second
line.

One or several words can be deleted easily by:

ndw (delete next n words)
ndb (delete previous n words)

These commands erase the next and previous n words, respectively. Again,
if n is omitted, it is assumed to be 1. Use:

ndd (delete n lines)

to delete the next n lines starting with the current line. Without n (n is 1),
the current line is deleted. Depending on your terminal, vi may remove the
deleted lines and close the gap by moving lines up from below, or it may use
an @ in front of an empty line to indicate a line deleted. These @’s are just
markers and are not in the buffer. They will disappear when the screen is
redrawn.

Sometimes a whole range of lines must be deleted. The command:

:i,jd (delete lines i to j)

deletes all lines from i to j, inclusive. The vi commands that begin with
a colon (:) are actually ex commands being accessed by vi. Most of these
commands use a range i, j where i and j are line numbers (addresses). The
address j must not be less than i. In specifying line addresses, you may use:

$ for the line at the end of the file
. for the current line

Also allowed are such expressions as:

9

+4 for current line plus 4
-3 for current line minus 3
$-10 for last line minus 10

and so on. For example, you would use:

:.,$d

to delete from the current line to the end of the buffer. To delete the four
previous lines and the current line (five lines all together), type:

:-4,.d

8 Undo and Repeat

What if you make a mistake and delete something you didnt mean to? The
vi command:

u (undo)

undoes the latest change made to the file. This command is very convenient
and often lifesaving. (For example, what happens if you press uu?) The cut
and-paste discussion (Section 2.10) has more on recovering deleted text.

Another convenience is the:

. (repeat)

command, which repeats the latest change made to the buffer. For example,
after giving the command 3x, you can move the cursor and press . to delete
another three characters. To illustrate the use of this feature, let us consider
commenting out code in a FORTRAN program. Suppose you want to insert
the four characters CC## at the beginning of a number of consecutive lines.
You position the cursor at the beginning of the first line, then press:

ICC##esc

From this point on, type the two characters:

return.

to comment out each successive line. return moves the cursor to the be-
ginning of the next line, and the period (.) repeats the last change, which is
the desired insertion.

10

9 Making Small Changes

The vi editor includes several provisions for making small changes easily and
efficiently:

rchar replaces the current character (at the cursor) by the given character
~ (tilde) changes the case (upper to lower or lower to upper) of the current

character
ncwtextesc replaces the next n words by the given text. The extent of the text

being replaced is marked on the screen by the cursor and a $ as soon
as ncw is typed.

ncbtextesc is the same as ncw but replaces the previous n words
nstextesc substitutes the next n characters by the given text

The following are some useful combinations of commands:

xp transposes the current character and the next character. This is really
the command x followed by the command p.

easesc pluralizes the current word. A combination of e and a.
ddp interchanges the current line and the next line. A combination of dd

and p.
dwwP interchanges the current word and the next word
dwbP interchanges the current word and the previous word

10 Text Objects and Operators

A text object is the portion of text defined by the current position in the
buffer and by a cursor motion command. It is either a continuous stream of
characters or a section of consecutive lines that is bounded at one end by
the current position and at the other by the place on which the cursor would
appear after a cursor motion command were executed. For example, if the
cursor is on the m of the word “men” in the following text:

Now is the time for

all good men to come

to the aid of their country.

11

then 2w specifies “men to,” tm specifies “men to co,” b specifies “good,” –
the first two lines, and + the last two lines. You might think of this concept
in terms of standing at one spot (the current position or current line) and
tossing a stone (a cursor motion command). The area between where you
are standing and where the stone lands is the text object you are interested
in.

An operator is a vi command that operates on a text object, which is given
to the operator as an argument. Two important operators are d (delete) and
c (replace or change away). For example:

dG deletes the current line through end of file

The d is the operator and the G is the cursor motion command that specifies
how far and in what direction to go from the current position to the other
boundary of the text object. Here are a few more examples:

d$ deletes the current character through end of line
d) deletes the current character to end of sentence
dtchar deletes the current character up to char in current line
c5w changes away five words (use b in place of w for five

words backward)
d/textesc deletes form the current character up to the text pattern

Another useful operator is the yank command y, which will be discussed in
the next section.

11 Cut and Paste

One of the most useful operations an editor can provide is cut and paste.
It reduces the task of rearranging major portions of a file to a matter of a
few keystrokes. The vi editor provides auxiliary buffers that can be used for
different kinds of cut-and-paste operations:

named buffers a set of 26 buffers a-z
dtb a single, unnamed, “deleted text buffer,” (dtb), which always

holds a copy of the latest deleted or changed away (cw, for
instance) text

numbered buffers the last nine blocks of deleted text are saved in a set of numbered
buffers 1-9

12

The vi editor also provides commands to save a part of the main buffer
in an auxiliary buffer and to copy the contents of an auxiliary buffer into the
main buffer. This mechanism allows you to move text around easily in your
file or between files.

Let’s say you want to cut five lines from one place and move them to
another place in the file. First move the cursor to the first of the five lines
to be cut, then issue the command:

5dd (delete five lines into dtb)

These deleted lines are held in the dtb. You then move the cursor to
where you want to paste these five lines and use the put command:

p or P (put dtb into buffer)

To insert a copy of the dtb into the main buffer. The exact position where
the insertion takes place depends on the location of the cursor and whether
the dtb contains whole lines or characters. If the dtb contains a number of
whole lines (for example, our five lines saved by 5dd), the insert position is
after (p) or before (P) the current line. If the dtb contains a sequence of
characters (for example, text saved by 200x), the insertion is after or before
the current character.

Copy into an Auxiliary Buffer: yank

To save text in a named buffer, you use the yank command y:

"xytext-object (copy object into buffer x)

where the first character is a double quotation mark. The x is any single-
character buffer name (a-z). If the command y is not preceded by a buffer
name, the dtb is used. Again, the text object to be yanked is specified by
an appropriate cursor motion key sequence as explained in the last section.
For example, to save the current line and the next nine lines in buffer v, you
would type:

"vy9return

The vi editor will display the message:

13

10 lines yanked

on the status line to confirm completion of the command. Note that the
cursor and the lines of text stay exactly the way they were. Of course, you
could use any cursor motion key sequence instead of 9RETURN to specify a
text object. Similar to y, the command:

"xdtext-object

deletes the specified text object into the named buffer x.

Paste: put

To copy text from a buffer x into the main buffer, type:

"xp (or "xP)

and the content of buffer x will be inserted after (or before) the current line.
If x is a numbered buffer n, the text inserted is the nth previously deleted
text.

Direct Text Relocation: move

There is also a command to move lines of text directly from one place in the
main buffer to another location:

:i,jmk (move lines i through j to k)

The range of lines i through j, inclusive, is moved after line k. For example:

:3,8m.

moves lines 3-8 after the current line. And:

:.,.+5m$

moves the current line and the next five lines to the end of the file.
It is often useful to mark certain lines with symbolic names when rear-

ranging text and to refer to these names instead of absolute line numbers.
The command:

14

mx (mark current position as x)

marks the current position with the single character name x. Any lowercase
character can be used as a mark. To move the cursor to this line from
anywhere in the buffer, you type:

´x (go to line marked x)
`x (go to character marked x)

Marked line addresses can be used in the same places as line numbers. For
example:

:´x,.m$

move the text between the mark x and the current line (inclusive) to the end
of file.

12 File-Related Commands

In simple applications of vi, the only necessary file manipulations are reading
the file into the buffer initially and writing the buffer back out onto the disk
at the end of the editing session. Files may, however, be accessed more
flexibly than this. The main buffer can be written out to the file in mid-
session. In fact, it is advisable to check your work occasionally by writing
out the modified file as you progress. Otherwise, if the system crashed or
you committed some dire error that erased the main buffer, you would lose
whatever changes you had made and a great deal of time. The forms of the
write command are:

:w writes back changes on disk
:w file writes the buffer to file
:w! file writes even if file exists
:i,jw file writes lines i-j to file

If file exists, vi will not overwrite it with the :w command, unless ! is
added. It means “please carry out command as requested, I know what I am
doing.” The usage is a carryover from the >! type shell-level commands.

It is often useful to read another file into the file being edited and combine
the two files. You can use:

15

:r file (read in file)

to read in the specified file and insert it after the current line.
If you wish to discard the current buffer and edit another file, you can

type:

:vi file (edit new file)

to replace the buffer by file. Whatever you have yanked from the old file will
not be affected by this action and will remain in the auxiliary buffers. This
command provides a way to cut and paste between files.

13 Text Substitution and Global Changes

Many times a file will require the same revision many times. For example,
if you have written a letter about a man named John and discover that he
spells his name “Jon,” you will not relish having to fix each reference to
his name individually. One of the most time-saving features provided by
an editor such as vi is the ability to make global changes—to change each
occurrence of a certain text pattern—with a single command. The more
instances there are of the pattern, the greater will be the savings in time
and effort. In this section we discuss several such global change commands.
Complete, detailed descriptions of the global commands can be found in the
ex reference manual. (Remember: The vi editor is an extension of the ex
editor.)

Substitute

The command:

:s/pattern/text/

is used to substitute text for the first occurrence of pattern in the current
line. For example:

:s/summer/winter/

substitutes the first occurrence of summer with winter on the current line.
The character & when used in the replacement text represents the pattern
text. Thus:

16

:s/summer/each &/

substitutes summer with each summer. The substitute text can be empty, in
which case the effect is deletion. If the substitute command is followed by g,
that is:

:s/pattern/text/g

then all occurrences in the current line are replaced.
The search and substitute operations can be combined into:

:/pattern1/s/pattern2/text/g

which first searches for a line containing pattern1 and then substitutes text
for pattern2 in that line. Note: pattern2 can be omitted if it is the same as
pattern1. Furthermore, the character & can be used in text to interpolate
the pattern. For example:

:/UNIX/s//& System V/

replaces the first occurrence of UNIX with UNIX System V.
The search patterns used can be more than simple strings. The way

search patterns are specified is discussed in 14.

Global Substitute

The global command :g allows you to specify a range of lines over which
other ex commands, such as s, are executed. The format is:

:rangeg/pattern/ex-commands

This means the commands are applied to all lines in the given range that
contain the specified pattern. (If range is not given, the default range is all
lines in the buffer.)

For example, to change the character string LISP to Common LISP through-
out the file, you would use:

:g/LISP/s//Common LISP/g

17

Note: If the trailing g is omitted, only the first occurrence on all lines will
be replaced. Global substitute is powerful but dangerous. It does not give
you a visual confirmation of each change. To remedy this, you may use an
additional character p (after the trailing g); then each affected line is dis-
played on your terminal as the replacements are made. Also beware: Global
changes, when issued incorrectly, can severely scramble the buffer. To guard
against this, always write out the buffer to the file before doing a global
replacement.

The :g can be applied to commands other than the substitute command.
For example, to delete all lines containing the string obsolete, you would
use:

:g/obsolete/d

Indentation

Another useful global change is the indentation of text. The commands:

n<<
n>>

indent and push out n lines starting at the current line. Each line is shifted by
an amount set by the shift width option sw (normally eight spaces). Similarly,
the commands:

<text-object
>text-object

shift the entire text object, which must consist of whole lines. In other words,
text objects of individual characters or words cannot be shifted in this way.
For example:

>G

right-shifts from the current line to the last line in the buffer, whereas:

>L

right-shifts from the current line to the last line on the screen.

18

14 Search Patterns

We have discussed the vi search command as a convenient way to move the
cursor to specific locations in the file. The search command looks for a text
string that matches a given pattern. The simplest pattern to find is a literal
string of characters. For example:

/four score

searches forward for the literal pattern four score. If ? is used instead of /,
then a backward search is performed. A pattern extending beyond the end
of one line into the next line cannot be specified in vi. This is a shortcoming
of vi having evolved from the line-oriented ex.

Special Characters in Search Patterns

Special arrangements have been made for locating patterns at the beginning
or end of lines. The character ^($) when used as the first (last) character
of a pattern matches the beginning (end) of the line. Thus the string four

score matches the pattern:

^four score

only if it begins in column one on some line. Similarly, it matches:

four score$

only when it is at the end of a line. If some blank space or nondisplaying
characters follow, the match will fail, even though it may appear to you to
be at the end of the line.

So far we have considered search patterns in which each character is speci-
fied exactly. In many situations, however, it is neither necessary nor desirable
to specify the pattern literally and exactly. Let us look at a practical exam-
ple: Consider editing a report that contains many items labeled sequentially
by (1), (2), and so on. In revising the document, you need to add a few new
items and renumber the labels. A search pattern can be specified as:

/[1-9]

19

where the notation [1-9] matches any single character 1-9. With this no-
tation, you can search using /i([1-9] the first time and then make the
appropriate modification to the number. You then can repeat the search
using the search repeat command n, change another number, search, and so
on until all the changes have been made.

The vi editor offers a rich set of pattern notations (Table 1). They are
referred to as regular expressions. To show the power of regular expressions,
let us look at some specific matches:

[A-Z] matches any capitalized character
\<[A-Z] matches any word that begins with a capital
^##* matches one or more #’s starting in column one
;;*$ matches one or more ;s at the end of a line
ing\> matches any word ending in ing

Quoting in Search Patterns

The use of special characters in any searching scheme inevitably leads to the
question of how to search for a pattern that contains a special character. Let
us say that you are editing a report and you want to search for [9], which
is a bibliographical reference used in the report. Because the pattern [9]

matches the single character 9, you need to quote the [and] so that they
represent themselves rather than taking on special meanings.

In vi the quote character \ (backslash) removes the special function of the
character immediately following, forcing it to stand for itself. For example:

/\[9\]

searches for the literal [9]. Here are some other examples:

/\.\.\. searches for ... (three dots)
?\?! searches backward for ?!
/\/* searches for /*
/\\ searches for \
/[0-9A-z] searches for any of the indicated characters

Quoting a character that does not need quoting usually causes no harm.

20

Pattern Meaning

x A single character x with no special meaning matches that char-
acter.

\x Any character x, quoted by \, matches that character (excep-
tions: newline, <, >).

^ The character ^ matches the beginning of a line.
$ The character $ matches the end of a line.
. The character . matches any single character.
[string] A string of characters enclosed by square brackets matches any

single character in string.
[x-y] The pattern matches any single character from x to y. The

notation is a shorthand for an explicit string.
[^string] The pattern matches any single character not in string.
pattern* The pattern matches any repetition of pattern (including zero).
\< The two-character notation matches the beginning of a word.
\> The two-character notation matches the end of a word.

Table 1: vi Pattern Notations

15 Setting vi Options

The vi editor includes a set of options that the user can set to affect vi
operation. These options help customize the editor for an individual user.
There are three kinds of options:

• numeric options

• string options

• toggle (binary) options

Numeric and string options are set by:

:set option=value

and toggle options are turn on or off by:

:set option (turn option on)
:set nooption (turn option off)

21

For example, magic is an option that is normally on. It allows for the special
characters ., [, and * in search patterns. If you enter

:set nomagic

then these characters no longer will be treated specially in search patterns.
To list options and their values for examination in vi, use the following
commands:

:set lists option values different from the default
:set option? shows value of option
:set all lists all option settings

Several of the most useful options are discussed here:

ic The ignorecase option forces vi to ignore the difference between upper
and lower case during searches. The default is noic.

sm The showmatch option bounces the cursor back momentarily to show
you the opening bracket when the closing bracket is typed in the insert
mode. This works for the commands) and }. If the matching bracket
can’t be found, vi beeps (if your terminal has the capability).

nu The nu option displays line numbers in front of the lines of text. The
default value is nonu.

ai The autoindent option controls the automatic indentation of lines when
text is inserted. When autoindent is set, a new line is started at the

same indentation as the previous line. This is especially useful when
typing in programs. However, it is often the case that the supplied
indentations are needed on some lines and not on others. To reject a
supplied indentation, immediately after receiving it type: ^D cancels
one shift width (default eight spaces) of indentation. Suppose, for ex-
ample, that after typing return while inserting, autoindent supplies
you with 16 spaces (or two tabs), and you only need eight spaces. You
should type ^D to move the cursor left eight spaces. The amount of left
shift for each ^D is itself an sw option. The default is noai.

22

lisp Setting the lisp option (default value is nolisp) facilitates editing LISP
programs. The vi editor then reads LISP S-expressions as text ob-
jects. The commands (and) move the cursor to an S-expression. The
commands { and } move over a balanced set of parentheses. The com-
mand % takes the cursor to the opposite balancing parenthesis. When
lisp is set, the autoindent works differently; it supplies a consistent
indentation level to align LISP expressions. One useful operation is
positioning the cursor at the beginning of a LISP function and typing:
=% This pretty prints the LISP structure by realigning the statements.

When a new vi job is initiated, all options have their default values. It
often is desirable to set certain options whenever you use vi or ex. You can
save options permanently by changing the shell environment variable EXINIT
(Section 18).

16 vi Macros

Occasionally, a sequence of editing commands is used repeatedly to make
similar changes at different places in a file. If the sequence is long enough
or used often enough, it may be convenient to assign a keystroke to save
the sequence, which can then be used in its place. In vi, such named key
sequences are called macros.

The map command establishes a named macro. The general form is:

:map key cmd-seq

where cmd-seq is a string representing one or more vi commands. For exam-
ple:

:map v /UNIX^Vesc

establishes the character v as a macro to search for UNIX in the buffer.
When v is typed, it is as though the entire key sequence /UNIXesc is typed.
Note the use of ^V to quote esc, so that it becomes part of the string and
not taken as terminating the map command.

Consider editing a file where the word UNIX is used frequently, some-
times in boldface and other times not. Let us say that you have decided to
go through the file and make UNIX boldface in certain places. For LATEX
(Chapter 14) documents, boldface UNIX is represented by:

23

{\bf UNIX}

in the text. Thus the editing task consists of searching for the pattern UNIX
and then for each occurrence, changing it to boldface if necessary. The map
command is used to establish the macro g:

:map g i{\bf ^Vescea}^Vesc

Now the macro g changes any word to {\bf word}, assuming the cursor has
been positioned on the first letter of word. With the preceding macros, an
otherwise tedious editing task is reduced to typing v’s and g’s.

Mapped command macro names are restricted to a single keystroke, which
may include a terminal function key. The command:

:map #n cmd-seq

defines function key Fn as a macro. Because g, v, and V are not already
defined as vi commands, they are good choices for macro names. However,
vi also allows you to save a command key sequence in a named buffer (a-z).
Once the key sequence is stored in a named buffer, the command:

@x (invoke macro in buffer x)

where x stands for the buffer name, will invoke the stored key sequence.
To cancel a macro use

:unmap macro-name

Input-mode Macros

In addition to making things easier in command mode, macros can also make
text or program constructs easier to enter during input mode. This is done
by the map! command in the form

:map! macro-name macro-definition-string

which defines an input macro.
Suppose you use the variable BankAccount a lot in developing a program,

you can issue the vi command

:map! `B BankAccount

24

to establish the input macro `B. Now the character combination `B typed
with normal speed during input mode will produce the full name desired.
Thus, typing the input macro `B has the actual effect of entering its definition
string.

During input mode, vi monitors each keystoke and checks if a character
is the lead letter of an input macro. Thus, it is advisable to use an infrequent
character to begin an input macro.

As another example, consider formatting a document in LATEX. The se-
quence

\verb:word:

produces a constant-width font print out word. The input macro \v makes
it easier to produce this construct:

:map! \v \verb::^Veschi

To activate the input macro \v, the two characters must be typed together
quickly. By typing slowly, you can avoid the effect of an input macro. For
example, typing \ and then v slowly in insert mode, the characters will be
entered into the buffer and not taken as the \v macro. The command

:unmap! macro-name

cancels the given input macro. (This is a place to enter the macro-name
slowly.) Settings of frequently used macros can be included on EXINIT.

17 Invoking the vi Editor

The routine usage of vi simply involves the command:

vi file

However, this is not the only way to invoke vi. The usage synopsis is:

vi [-t tag] [-r] [+ command] [-l] [-wn] file ...

The options and their meaning are explained:

25

-l This option is used to set up vi for editing a LISP source code file.
When invoked with the -l option, vi automatically sets the options
showmatch and lisp.

-r This option is used to recover after an editor or system crash, or to
recover from failing to exit the editor before logging out. The command:
vi -r gives a complete listing of files saved that can be recovered. A
typical output is:
On Sun Jun 1 at 17:10 saved 4 lines of file ".exrc"

On Mon May 26, at 22:01 saved 28 lines of file "community"

On Tue May 27 at 23:52 saved 67 lines of file "hash.C"

to recover any of these saved files simply use:
vi -r name

-wn This option sets the window size to n lines. The default size at high
speeds is 24, the size of most terminals. On dial-up lines, the default
size is either 16 or eight lines, depending on the speed of the line.

-t tag This option is useful in maintaining a group of related source code
or other text files. A tag is searched for in a file bearing the name
tags in the current directory. The tags file is normally created by a
command such as ctags. A tags file follows a simple format. It contains
a number of lines, each with three fields separated by blanks or tabs:
tag-name filename ex-cursor-position-command. The lines in a tags file
are sorted. The effect of the command: vi -t tag

is to search for a line in the tags file with tag in the first field. When
found, the file name in the second field is loaded into vi for editing,
and the cursor is moved to an initial position specified by the search
command in the third field. For example, the file /usr/lib/tags con-
tains systemwide tags information for UNIX source code. The vi op-
tion tags contains the names of all tags files. The default setting is:
tags=tags/usr/lib/tags A tag is searched for in sequence in the files
given in the tags option.

+command This indicates that vi should begin by executing the specified command.
For example, the argument +50 places the cursor on line 50.

26

18 vi Initialization: EXINIT and .exrc

The shell environment variable EXINIT is used to initialize vi and ex, so that
commands and option settings contained in EXINIT will be executed any time
vi or ex is invoked.

For example, including the following line:

setenv EXINIT ´set lisp ai sm ic´

in the .login file for csh, or the lines:

EXINIT=´set ai lisp sm ic´

export EXINIT

in the .profile file for sh users, sets the indicated options at program
startup. The settings shown here are useful for editing LISP programs. The
EXINIT can also be set to a sequence of ex commands (those accessed from
vi with the : prefix) separated by the | character.

For example, the following can be put in your .login file:

setenv EXINIT "se ai terse nowarn sm ic slow |\

map! \fo for(; ;)"

In addition to this initialization mechanism, vi and ex also use the ini-
tialization file:

.exrc

in a user’s home directory. Commands contained in this file are processed as
though they are typed interactively every time vi or ex is invoked. Option
settings and often-used macros can be put in a .exrc file, an example of
which is shown in Figure 1. Note, on some systems vi looks for .exrc in the
current directory, or not at all.

The .exrc file in Figure 1 sets the key g to italicize a word, V to boldface
a word, and v to set a word in LATEX verbatim mode. The symbol ^[is the
display representation of the nondisplayable character esc.

27

map g i{\it ^[ea}^[

map V i{\bf ^[ea}^[

map v i\verb:^[ea:^[

Figure 1: Example .exrc file

19 Other Editors

Besides vi and emacs, UNIX systems offer other text editors that employ a
window-mouse environment to make editing more intuitive. Such editors can
be much easier to learn then vi but not nearly as powerful. For example,
xedit is an editor under the X Window System and the textedit works under
the SunView window system. These typically allow you to use the mouse to
select operations. Keyboard input are inserted at the editing cursor position.
You can use the mouse and the arrow keys to move the editing cursor, and
the delete/backspace key to delete characters.

20 For More Information

Appendix 2 is a quick reference card for vi. See also the books: The Vi Editor
by Linda Lamb (O’Reilly and Associates) and The Ultimate Guide to the vi
and ex Text Editors, by Hewlett Packard Company (Benjamin/Cummings).

21 Summary

For UNIX, vi is the standard full-screen text editor. This editor is available
on all UNIX systems and behaves the same way no matter which UNIX you
use. The vi editor takes advantage of display terminal capabilities. A buffer
is used to hold the text being edited. Changes made in the buffer are not
made in the disk file until specifically requested by the user.

The vi editor operates in two distinct modes: the command mode and
the insert mode. Useful editing commands make operations such as insert,
delete, search, cut, paste, global replacement easy. You issue a command to
enter insert mode and to input text into the buffer. While inserting text, you

28

are in the insert mode. Ending text insertion brings vi back to command
mode.

In vi you can also establish command macros and input macros, short-
hands that make user-defined key sequences easy to enter.

Another popular editor available on UNIX systems is emacs. An outline
of emacs can be found in Appendix 1. Other text editors are also available.

29

