

Technique of Recursion

Concept of Recursion

- Let us consider a set of nested subroutines...

DESIGN \& ALALYSIS OF ALGORITHM

DESIGN \&

Recursion

- Recursion is a powerful tool which can make the solution of many difficult problem astonishingly easy.
- It is a powerful tool to divide and conquer complex problems.
- However, it is also very important to carefully analyze a recursive solution.
- In this class we will see two examples of recursive solutions, and will learn techniques how to analyze recursive programs.

Tower of Hanoi

DESIGN \& ALALYSIS OF ALGORITHM

This is task which is underway at the Temple of Brahma. At the creation of the world, the priest were given a brass platform on which were 3 diamond needles. On the first needle were stacked 64 golden disks, each one slightly smaller than the one under it. The priest were assigned the task of moving all the golden disks from the first needle to the third. The end of the task will signify the end of the world.

Solution

- Solution:

Move(64,1,3,2)

- Meaning: Move 64 disks from tower 1 to tower 3 using tower 2 as temporary.

Solution (Divide and Conquer)

- \quad Step 1:
- Move (63,1,2,3)
- printf("Move disk \#64 from tower 1 to tower 3\n");
- Move(63,2,3,1)
- \quad Step 2 ?

Structure of Recursive Program

DESIGN \& ALALYSIS OF ALGORITHM

Every recursive process consists of two parts:

1. A smallest, base case that is processed without recursion; and
2. A general method that reduces a particular case to one or more of the smaller cases, thereby making progress toward eventually reducing the problem all the way to the base case.

LECT-03, S-12 ALG00S, javed@kent.edu Javed I. Khan@1999

Demonstration:
 Tower of Hanoi

LECT-03, S-14 ALGOOS, javed@kent.edu Javed I. Khan@1999

How Large is this number?

- $10^{3} \approx 2^{10}$
- Let the priest can perform
- one move per second then it will take:
$-2^{64}>2^{4} \cdot 2^{60}=16 \times 10^{18} \mathrm{secs}$
- There are about:
- 3.2×10^{7} seconds in a year.
- The life of universe is 20 billion years.
_ It will take 25 times more to complete the task!
- Computers will fail
_ because of time.
_ How much space will be required?

A Useful Case

A Fruitful Application of Recursion: n-queen problem

DESIGN \& ALALYSIS OF ALGORITHM

Apparently an analytically unsolvable problem. Even C. F. Gauss, who attempted this in 1850 was perplexed by this problem. But, solution do exists. See the two shown above.

Solution Outline

```
void
AddQueen(void)
{
    for (every unguarded position p on the
board)
            Place a queen in position p;
            n++;
            if (n == 8)
                Print the configuration;
            else
                AddQueen();
            Remove the queen from position p;
            n--;
        }
}
```

DESIGN \&
ALALYSIS OF
ALGORITHM

LECT-03, S-20 ALG00S, javed@kent.edu Javed I. Khan@1999

Choice of Data Structure

- Boolean array or integer array?

DESIGN \& ALALYSIS OF ALGORITHM

- Keep a count of check, to help backtracking.
- Search later or mark ahead?
- Pigeon hole principle
- use one row one queen to reduce search.
- Keep track of free columns
- int col[8]
- Keep track of free diagonals
- number of diagonal $2 *$ boardsize -1
- all downdiagonal ($x-y$)=constant
- all updiagonal $(x+y)=$ constant

Analysis

- Naïve approach:
- generate a random configuration and test it.

$$
\binom{64}{8}=4,426,165,368
$$

- One queen per row

$$
8^{8}=16,777,216
$$

- One queen per column

$$
8!=40,320
$$

