
1

2

CS 4/56101

Design and Analysis of
Algorithms

Kent State
University
Dept. of Math & Computer Science

LECT-3

 LECT-03, S-3
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

What did we
learned in the last

class?

Flashback:
Two versions

of Game of
Life..

2

 LECT-03, S-4
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Lesson from Last Class

Program Analysis and Program Design are
closely interrelated. A good computer

engineer must know both.

In this course we will learn a host of new
powerful programming techniques. Along

with we will learn more formal methods for
analyzing their performance.

5

Technique of
Recursion

3

 LECT-03, S-6
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Concept of Recursion

• Let us consider a set of nested subroutines...

 LECT-03, S-7
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Program Stack

In recursive program,
instead of one routine
calling a different routine,
one routine can repeatedly
calls itself.

4

 LECT-03, S-8
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Recursion

• Recursion is a powerful tool which can make
the solution of many difficult problem
astonishingly easy.

• It is a powerful tool to divide and conquer
complex problems.

• However, it is also very important to carefully
analyze a recursive solution.

• In this class we will see two examples of
recursive solutions, and wil l learn techniques
how to analyze recursive programs.

 LECT-03, S-9
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Tower of Hanoi

This is task which is underway at the Temple of Brahma. At
the creation of the world, the priest were given a brass platform
on which were 3 diamond needles. On the first needle were
stacked 64 golden disks, each one slightly smaller than the one
under it. The priest were assigned the task of moving all the
golden disks from the first needle to the third. The end of the
task will signify the end of the world.

5

 LECT-03, S-10
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Solution
• Solution:

Move(64,1,3,2)
• Meaning: Move 64 disks from tower 1 to tower

3 using tower 2 as temporary.

 LECT-03, S-11
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Solution (Divide and Conquer)

• Step 1:
– Move (63,1,2,3)

– printf(“Move disk #64 from tower 1 to tower 3\n”);

– Move(63,2,3,1)

• Step 2 ?

6

 LECT-03, S-12
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Structure of Recursive Program

 LECT-03, S-13
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Solution

/* Move: moves count disks from start to finish using
temp
for temporary storage. */
void Move(int count, int start, int finish, int temp)
{
 if (count > 0) {
 Move(count-1, start, temp, finish);
 printf("Move a disk from %d to %d.\n", start,
finish);
 Move(count-1, temp, finish, start);
 }
}

7

 LECT-03, S-14
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHMDemonstration:

Tower of Hanoi

Hanoi.exe

 LECT-03, S-15
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Program Trace

Move(2,1,3,2)

8

 LECT-03, S-16
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Analysis
• Recursion Tree

• Number of Nodes= 1+2+4+…….. 2 63 = 2 64 -1

Height & Number of Nodes

 LECT-03, S-17
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

How Large is this number?

• 10 3 ≈ 2 10

• Let the priest can perform
– one move per second then it will take:

– 2 64 > 2 4 . 2 60 = 16 x 10 18 secs

• There are about:
– 3.2 x 10 7 seconds in a year.

– The li fe of universe is 20 billi on years.

– It will take 25 times more to complete the task!

• Computers will fail

– because of time.

– How much space will be required?

9

18

A Useful Case

 LECT-03, S-19
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

A Fruitful Application of Recursion:

n-queen problem

Apparently an analytically unsolvable problem. Even C. F.
Gauss, who attempted this in 1850 was perplexed by this
problem. But, solution do exists. See the two shown above.

10

 LECT-03, S-20
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Solution Outline
void
AddQueen(void)
{
 for (every unguarded position p on the
board) {
 Place a queen in position p;
 n++;
 if (n == 8)
 Print the configuration;
 else
 AddQueen();
 Remove the queen from position p;
 n--;
 }
}

 LECT-03, S-21
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Example 4-Queen

11

 LECT-03, S-22
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Example 4-Queen

Backtracking: Build correct partial solution and proceed.
When an inconsistant state arises, the algorithm backs up to
the point of last correct partial solution.

 LECT-03, S-23
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Choice of Data Structure

• Boolean array or integer array?
– Keep a count of check, to help backtracking.

• Search later or mark ahead?

• Pigeon hole principle
– use one row one queen to reduce search.

• Keep track of free columns
– int col[8]

• Keep track of free diagonals
– number of diagonal 2*boardsize -1

– all downdiagonal (x-y)=constant

– all updiagonal (x+y)=constant

12

 LECT-03, S-24
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

#include "common.h"
#define BOARDSIZE 8
#define DIAGONAL (2*BOARDSIZE-1)
#define DOWNOFFSET 7

void WriteBoard(void);
void AddQueen(void);

int queencol[BOARDSIZE]; /* column with the queen */
Boolean colfree[BOARDSIZE]; /* Is the column free? */
Boolean upfree[DIAGONAL]; /* Is the upward diagonal free? */
Boolean downfree[DIAGONAL]; /* Is the downward diagonal free? */

int queencount = -1, /* row whose queen is currently placed
*/
 numsol = 0; /* number of solutions found so far
*/

 int main(void)
{
 int i;

 for (i = 0; i < BOARDSIZE; i++)
 colfree[i] = TRUE;

 for (i = 0; i < DIAGONAL; i++) {
 upfree[i] = TRUE;
 downfree[i] = TRUE;
 }

 AddQueen();

 return 0;
}

Main()

 LECT-03, S-25
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

void AddQueen(void)
{
 int col; /* column being tried for the queen */

 queencount++;
 for (col = 0; col < BOARDSIZE; col++)
 if (colfree[col] && upfree[queencount + col] &&
 downfree[queencount - col + DOWNOFFSET]) {
 /* Put a queen in position (queencount, col). */
 queencol[queencount] = col;
 colfree[col] = FALSE;
 upfree[queencount + col] = FALSE;
 downfree[queencount - col + DOWNOFFSET] = FALSE;
 if (queencount == BOARDSIZE-1) /* termination condition
*/
 WriteBoard();
 else
 AddQueen(); /* Proceed recursively.
*/
 colfree[col] = TRUE; /* Now backtrack by removing the
queen. */
 upfree[queencount + col] = TRUE;
 downfree[queencount - col + DOWNOFFSET] = TRUE;
 }
 queencount--;
}

AddQueen()

13

 LECT-03, S-26
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Analysis

• Naïve approach:
– generate a random configuration and test it.

368,165,426,4
8

64
=

• One queen per row

216,777,1688 =

• One queen per column

320,40!8 =

 LECT-03, S-27
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Part of Recursion Tree for 8-queen

Height & Number of Nodes

