CS 4/56101 Kent State

» University
Design and Analysis of

. Dept. of Math & Computer Science
Algorithms LECT-3

What did we| oo

learned in thelast| ~-c=m™
class?

F ashback:
Two versions
of Game of

Life..

LECT-03, S-3
ALGOOS, javed@kent.edu
Javed |. Khan@1999

L esson from Last Class

Program Analysis and Program Design are
closely interrelated. A good computer
engineer must know both.

In this course we will learn a host of new
power ful programming techniques. Along
with we will learn more formal methods for
analyzing their performance.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-4

ALGOOS, javed@kent.edu
Javed I. Khan@1999

Tednique of
Recursion

Concept of Recursion
DESIGN &
« Let usconsider aset of nested subroutines... AL GORITHM
LECT-03, S-6
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Program Stack
DESIGN &
. e ALALYSISOF
—> Finish . ALGORITHM
In recursive program,
instead of one routine
calling a different routine,
one routine can repeatedly
callsitself.
Time — LECT-03, S-7
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Recursion

* Recursonisapowerful tod which can make
the solution d many dfficult problem
astonishingly easy.

* Itisapowerful tod to divide and conquer
complex problems.

* However, it isalso very important to carefully
analyze arecursive solution.

* Inthisclasswe will seetwo examples of
recursive solutions, and will learn tedhniques
how to analyzerecursive programs.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-8
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Tower of Hanoi

Thisistask which isunderway at the Temple of Brahma. At
the creation of the world, the priest were given abrassplatform
on which were 3 diamond needles. On the first needlewere
stacked 64 golden disks, each one dightly smaller than the one
under it. Thepriest wereassigned thetask of moving all the
golden disksfrom thefirst needleto the third. Theend of the
task will signify the end of theworld.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-9
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Solution
e Solution:

Move(64,1,32)

* Meaing Move 64 dsksfrom tower 1 to tower
3 using tower 2 astemporary.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-10
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Solution (Divide and Conquer)

Step I
— Move(63,12,3)
— printf(“Move disk #64 from tower 1 to tower 3\n”);
— Move(63,23,1)

Step 27

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-11
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Structure of Recursive Program

Every recursive process consists of two parts:

1. A smallest, base case that is processed without recur-
sion; and

2. A general method that reduces a particular case to one
or more of the smaller cases, thereby making progress
toward eventually reducing the problem all the way to
the base case.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-12
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Solution

, int finish, int temp);

been moved to fini
been returned

/* Move: noves count disks fromstart to finish using
tenp

for tenporary storage. */

void Mwve(int count, int start, int finish, int tenp)

if (count > 0) {
Move(count-1, start, tenp, finish);
printf("Mve a disk from%l to %l. \n", start,
finish);
Move(count-1, tenp, finish, start);
}

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-13
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Demonstration:
Tower of Hanoi

Hanoi . exe

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-14
ALGOOS, javed@kent.edu

Javed |. Khan@1999

DESIGN &
ALALYSISOF
ALGORITHM

Move(2,1,3,2)

Move (0, 3, 1, 2)

)

LECT-03, S-15
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Analysis

« RecursonTree DESIGN &
Height & Number of Nodes | Accorirum

LECT-03, S-16
ALGOOS, javed@kent.edu

Javed |. Khan@1999

How Large isthis number?
e 103=210 ALALYSISOF
o Let the priest can perform

— one move per secondthen it will take:
- 2%>24 260=16x10%secs

* There are dout:
— 3.2x107secondsin ayear.
__ Thelife of universeis 20 hilli on years.

_Itwill take 25times more to complete the task!
e Computerswill fail

because of time.

__ How much space will be required?

LECT-03, S-17
ALGOOS, javed@kent.edu

Javed |. Khan@1999

A Useful Case

18

A Fruitful Application d Reaursion: .]
n'quem prObI em DESIGN &

ALALYSISOF
ALGORITHM

Apparently an analytically unsolvable problem. Even C. F.
Gauss, who attempted thisin 1850 was per plexed by this
problem. But, solution do exists. See the two shown above.

LECT-03, S-19
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Solution Outline

voi d
AddQueen(voi d)
{
for (every unguarded position p on the
board) {
Pl ace a queen in position p;
n++;
if (n == 18)
Print the configuration;
el se
AddQueen();
Rermove the queen from position p;
n--;
}
}

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-20
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Example 4-Queen

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-21
ALGOOS, javed@kent.edu

Javed |. Khan@1999

10

Example 4-Queen

Backtracking: Build correct partial solution and proceed.
When an inconsistant state arises, the algorithm backsup to
the point of last correct partial solution.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-22
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Choice of Data Structure

* Bodean array or integer array?
— Keep acount of check, to help backtracking.
* Seach later or mark ahead?
* Pigeon hde principle
— useonerow one queen to reduce search.
* Kee track of freecolumns
— intcol[8]
* Keetrack of freediagords
— number of diagonal 2*boardsize -1
— al downdiagord (x-y)=constant
— al updagonal (x+y)=constant

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-23
ALGOOS, javed@kent.edu
Javed |. Khan@1999

11

#i ncl ude "common. h"

#defi ne BOARDSI ZE 8

#defi ne DI AGONAL (2* BOARDSI ZE- 1)
#defi ne DONNOFFSET 7

void WiteBoard(void); [A)Ei'g\‘s&s()':
voi d AddQueen(void); ALGORITHM
int queencol [BOARDSI ZE] ; /* colum with the queen */
Bool ean col free[BOARDSI ZE]; /* Is the colum free? */
Bool ean upfree[DI AGONAL] ; /* I's the upward di agonal free? */
Bool ean downfree[DI AGONAL]; /* Is the downward di agonal free? */
int queencount = -1, /* row whose queen is currently placed
*
/
nunsol = 0; /* nunber of solutions found so far
*
/
int main(void)
e
int i;
for (i =0; i < BOARDSIZE; i++)
colfree[i] = TRUE;
for (i =0; i < DIAGONAL; i++) {
upfree[i] = TRUE
downfree[i] = TRUE;
}
AddQueen(); Maln
return O; ()
} LECT-03, S-24
ALGO0S, javed@kent.edu
Javed |. Khan@1999
voi d AddQueen(voi d)
{
int col; /* colum being tried for the queen */ DESIGN &
ALALYSISOF
queencount ++; ALGORITHM
for (col = 0; col < BOARDSIZE, col ++)
if (colfree[col] &k upfree[queencount + col] &&
downfree[queencount - col + DOAMNCFFSET]) {
/* Put a queen in position (queencount, col). */
queencol [queencount] = col;
col free[col] = FALSE;
upf ree[queencount + col] = FALSE;
downfree[queencount - col + DOANOFFSET] = FALSE;
if (queencount == BOARDSI ZE-1) /* term nation condition
*
/
WiteBoard();
el se
AddQueen(); /* Proceed recursively.
*
/
col free[col] = TRUE /* Now backtrack by renpving the
queen. */
upf ree[queencount + col]
downfree[queencount - col + DOANCFFSET] = TRUE
queencount - -;
} AddQueen()
LECT-03, S-25

ALGO0S, javed@kent.edu
Javed |. Khan@1999

12

Analysis

* Naive approad:
— generate arandom configurationand test it.

* One queen per row

« One queen per column

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-26
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Part of Recursion Tree for 8-queen

Height & Number of Nodes

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-27
ALGOOS, javed@kent.edu

Javed |. Khan@1999

13

