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L esson from Last Class

Program Analysis and Program Design are
closely interrelated. A good computer
engineer must know both.

In this course we will learn a host of new
power ful programming techniques. Along
with we will learn more formal methods for
analyzing their performance.
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Tednique of
Recursion




Concept of Recursion
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« Let usconsider aset of nested subroutines... AL GORITHM
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Program Stack
DESIGN &
. e ALALYSISOF
—> Finish . ALGORITHM
In recursive program,
instead of one routine
calling a different routine,
one routine can repeatedly
callsitself.
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Recursion

* Recursonisapowerful tod which can make
the solution d many dfficult problem
astonishingly easy.

* Itisapowerful tod to divide and conquer
complex problems.

* However, it isalso very important to carefully
analyze arecursive solution.

* Inthisclasswe will seetwo examples of
recursive solutions, and will learn tedhniques
how to analyzerecursive programs.
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Tower of Hanoi

Thisistask which isunderway at the Temple of Brahma. At
the creation of the world, the priest were given abrassplatform
on which were 3 diamond needles. On the first needlewere
stacked 64 golden disks, each one dightly smaller than the one
under it. Thepriest wereassigned thetask of moving all the
golden disksfrom thefirst needleto the third. Theend of the
task will signify the end of theworld.
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Solution
e Solution:

Move(64,1,32)

* Meaing Move 64 dsksfrom tower 1 to tower
3 using tower 2 astemporary.
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Solution (Divide and Conquer)

Step I
— Move(63,12,3)
— printf(“Move disk #64 from tower 1 to tower 3\n”);
— Move(63,23,1)

Step 27
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Structure of Recursive Program

Every recursive process consists of two parts:

1. A smallest, base case that is processed without recur-
sion; and

2. A general method that reduces a particular case to one
or more of the smaller cases, thereby making progress
toward eventually reducing the problem all the way to
the base case.
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Solution

, int finish, int temp);

been moved to fini
been returned

/* Move: noves count disks fromstart to finish using
tenp

for tenporary storage. */

void Mwve(int count, int start, int finish, int tenp)

if (count > 0) {
Move(count-1, start, tenp, finish);
printf("Mve a disk from%l to %l. \n", start,
finish);
Move(count-1, tenp, finish, start);
}
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Demonstration:
Tower of Hanoi

Hanoi . exe
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Move(2,1,3,2)

Move (0, 3, 1, 2)

)
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Analysis

« RecursonTree DESIGN &
Height & Number of Nodes |  Accorirum
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How Large isthis number?
e 103=210 ALALYSISOF
o Let the priest can perform

— one move per secondthen it will take:
- 2%>24 260=16x10%secs

* There are dout:
— 3.2x107secondsin ayear.
__ Thelife of universeis 20 hilli on years.

_Itwill take 25times more to complete the task!
e Computerswill fail

because of time.

__ How much space will be required?
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A Useful Case

18

A Fruitful Application d Reaursion: . ]
n'quem prObI em DESIGN &

ALALYSISOF
ALGORITHM

Apparently an analytically unsolvable problem. Even C. F.
Gauss, who attempted thisin 1850 was per plexed by this
problem. But, solution do exists. See the two shown above.
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Solution Outline

voi d
AddQueen(voi d)
{
for (every unguarded position p on the
board) {
Pl ace a queen in position p;
n++;
if (n == 18)
Print the configuration;
el se
AddQueen();
Rermove the queen from position p;
n--;
}
}
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Example 4-Queen
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Example 4-Queen

Backtracking: Build correct partial solution and proceed.
When an inconsistant state arises, the algorithm backsup to
the point of last correct partial solution.
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Choice of Data Structure

* Bodean array or integer array?
— Keep acount of check, to help backtracking.
* Seach later or mark ahead?
* Pigeon hde principle
— useonerow one queen to reduce search.
* Kee track of freecolumns
— intcol[8]
* Keetrack of freediagords
— number of diagonal 2*boardsize -1
— al downdiagord (x-y)=constant
— al updagonal (x+y)=constant
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#i ncl ude "common. h"

#defi ne BOARDSI ZE 8

#defi ne DI AGONAL (2* BOARDSI ZE- 1)
#defi ne DONNOFFSET 7

void WiteBoard(void); [A)Ei'g\‘s&s()':
voi d AddQueen(void); ALGORITHM
int queencol [ BOARDSI ZE] ; /* colum with the queen */
Bool ean col free[ BOARDSI ZE]; /* Is the colum free? */
Bool ean upfree[ DI AGONAL] ; /* I's the upward di agonal free? */
Bool ean downfree[ DI AGONAL]; /* Is the downward di agonal free? */
int queencount = -1, /* row whose queen is currently placed
*
/
nunsol = 0; /* nunber of solutions found so far
*
/
int main(void)
e
int i;
for (i =0; i < BOARDSIZE; i++)
colfree[i] = TRUE;
for (i =0; i < DIAGONAL; i++) {
upfree[i] = TRUE
downfree[i] = TRUE;
}
AddQueen(); Maln
return O; ()
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voi d AddQueen(voi d)
{
int col; /* colum being tried for the queen */ DESIGN &
ALALYSISOF
queencount ++; ALGORITHM
for (col = 0; col < BOARDSIZE, col ++)
if (colfree[col] &k upfree[queencount + col] &&
downfree[ queencount - col + DOAMNCFFSET]) {
/* Put a queen in position (queencount, col). */
queencol [ queencount] = col;
col free[col] = FALSE;
upf ree[ queencount + col] = FALSE;
downfree[ queencount - col + DOANOFFSET] = FALSE;
if (queencount == BOARDSI ZE-1) /* term nation condition
*
/
WiteBoard();
el se
AddQueen(); /* Proceed recursively.
*
/
col free[col] = TRUE /* Now backtrack by renpving the
queen. */
upf ree[ queencount + col]
downfree[ queencount - col + DOANCFFSET] = TRUE
queencount - -;
} AddQueen()
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Analysis

* Naive approad:
— generate arandom configurationand test it.

*  One queen per row

« One queen per column
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Part of Recursion Tree for 8-queen

Height & Number of Nodes
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