
1

28

Principles of
Recursive Program

Design

 LECT-03, S-29
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Designing Recursive Algorithms

• Find the key step.
– How can this problem be divided into parts?

– How will the key step in the middle be done?

– Avoid ending with multitude of special cases.

• Find a stopping rule.
– This stopping rule is usually the small case that is

easy to handle without recursion.

• Outline your algorithm.
– Combine the stopping rule and the key step, using an

if statement to select between them.

2

 LECT-03, S-30
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Designing Recursive Algorithms
(Continued..)

• Check termination.
– Verify that the recursion will always terminate.

– Be sure that your algorithm correctly handles
extreme cases.

• Draw a recursion tree.
– The height of the tree is closely related to the

amount of memory that the program will
require,

– the total size of the tree relates to the number of
times the key step will be done.

 LECT-03, S-31
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Implementing Recursion

• Implementation is separate from
design.

– Implementation can

 be in any language.

• Multiple Processors:
– Processes that take place

simultaneously are

called concurrent.

• Single Processor:
– can use multiple storage

 areas with a single processor.

• Re-entrant Programs

3

32

Improving Recursive
Programs:
The case of

Tail Recursion

 LECT-03, S-33
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Data Structure for
Recursion: Stacks and

Trees

Who creates/manages
 these stacks?

4

 LECT-03, S-34
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Tail Recursion

 LECT-03, S-35
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Removal of Tail Recursion

5

 LECT-03, S-36
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Can Tower of Hanoi be simplified?

/* Move: moves count disks from start to finish using temp
for temporary storage. */

void Move(int count, int start, int finish, int temp)
{
 if (count > 0) {
 Move(count-1, start, temp, finish);
 printf("Move a disk from %d to %d.\n", start,
finish);
 Move(count-1, temp, finish, start);
 }
}

 LECT-03, S-37
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Iterative Tower of Hanoi

void Move(int count, int start, int finish, int temp)
{
 if (count > 0) {
 Move(count-1, start, temp, finish);
 printf("Move a disk from %d to %d.\n", start, finish);
 Move(count-1, temp, finish, start);
 }
}

void Move(int count, int start, int finish, int temp)
{
 int swap; /* temporary storage to swap towers */
 while (count > 0) {
 Move(count - 1, start, temp, finish);
 printf("Move %d from %d to %d.\n", count, start, finish);
 count--;
 swap = start;
 start = temp;
 temp = swap;
 }
}

6

 LECT-03, S-38
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Can n-queen be
simpli fied?

 LECT-03, S-39
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

void AddQueen(void)
{
 int col; /* column being tried for the queen */

 queencount++;
 for (col = 0; col < BOARDSIZE; col++)
 if (colfree[col] && upfree[queencount + col] &&
 downfree[queencount - col + DOWNOFFSET]) {
 /* Put a queen in position (queencount, col). */
 queencol[queencount] = col;
 colfree[col] = FALSE;
 upfree[queencount + col] = FALSE;
 downfree[queencount - col + DOWNOFFSET] = FALSE;
 if (queencount == BOARDSIZE-1) /* termination condition
*/
 WriteBoard();
 else
 AddQueen(); /* Proceed recursively.
*/
 colfree[col] = TRUE; /* Now backtrack by removing the
queen. */
 upfree[queencount + col] = TRUE;
 downfree[queencount - col + DOWNOFFSET] = TRUE;
 }
 queencount--;
}

Flashback: AddQueen()

7

 LECT-03, S-40
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Demo:
Time Comparison of two

N-Queen Solutions

Queennr.exe

 LECT-03, S-41
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Should we Always use Recursion?

Case: Factorials
• Recursive Version:

• Iterative Version?

/* Factorial: recursive version.*/
int Factorial(int n)
{
 if (n == 0)
 return 1;
 else
 return n * Factorial(n-1);
}

/* Function: iterative version.*/
int Factorial(int n)
{
 int count, product;
 for (product = 1, count = 2; count <= n;
count++)
 product *= count;
 return product;
}

Which one will work harder?

8

 LECT-03, S-42
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Fibonacci Numbers

• Finonacci Number

2

1

0

11

1

0

≥+=
=
=

−− nwhenFFF

F

F

nnn

 LECT-03, S-43
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

A Cute Solution

int Fibonacci(int n)
{
 if (n <= 0)
 return 0;
 else if (n == 1)
 return 1;
 else
 return Fibonacci(n-1) + Fibonacci(n-2);
}

Efficiency?

9

 LECT-03, S-44
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Recursion Tree

The growth is
nearly exponential!

 LECT-03, S-45
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Iterative Fibonacci
 /* Fibonacci: iterative version.*/

int Fibonacci(int n)
{
 int i;
 int twoback; /* second previous number, F_i-2 */
 int oneback; /* previous number, F_i-1 */
 int current; /* current number, F_i */

 if (n <= 0)
 return 0;
 else if (n == 1)
 return 1;
 else {
 twoback = 0;
 oneback = 1;

 for (i = 2; i <= n; i++) {
 current = twoback + oneback;
 twoback = oneback;
 oneback = current;
 }
 return current;
 }
}

10

 LECT-03, S-46
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Comparison: Iteration vs. Recursion

• Chain

• Duplicate Task

• Change Data Structures

• Recursion Removal

 LECT-03, S-47
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Guidelines

• If the recursion tree has a simple form,
the iterative version may be better.

• If the recursion tree involves duplicate
task, then data structures other than
stacks will be appropriate.

• If the recursion tree appears quite bushy,
with little duplicate tasks, then recursion
is likely the natural solution.

