Principles of
Recursive Program
Design

28

Designing Recursive Algorithms

DESIGN &
ALALYSISOF

i Fl nd the key Step ALGORITHM

— How can this problem be divided into parts?
— How will the key step in the midd e be dore?
— Avoid ending with multitude of specia cases.

* Find astoppngrule.

— This goppingruleisusually the small case that is
easy to handle without recursion.

* Outline your algorithm.

— Combine the stopping rule and the key step, using an

if statement to select between them.

LECT-03, S-29
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Designing Recursive Algorithms
(Continued..)

Check termination.
— Veify that the recursionwill always terminate.
— Besurethat your algorithm correctly handes
extreme cases.
Draw areaursion tree.

— Theheight of the treeis closely related to the
amount of memory that the program will
require,

— thetotal sizeof the tree relates to the number of
times the key step will be dore.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-30
ALGOOS, javed@kent.edu
Javed I. Khan@1999

| mplementing Recursion

I mplementation is separate from
design.
— Implementation can
bein any language. __ Instuctons
Multiple Processors:. ||
— Processes that take place
smultaneously are
called concurrent.
Single Processor:
— can use multiple storage
areas with asingle processor.

Re-entrant Programs

Processor

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-31

ALGOOS, javed@kent.edu

Javed |. Khan@1999

|mproving Recursive
Programs:
The @ase of
Tail Recursion

32

Data Structure for
ecursion: Stacksand | oesens

ALALYSISOF
ALGORITHM

Who creates/manages
these stacks?

LECT-03, S-33
ALGOOS, javed@kent.edu

Javed I. Khan@1999

Tail Recursion

Dermvition Tail recursion occurs when the last-executed
statement of a function is a recursive call to itself.

If the last-executed statement of a function is a recursive
call to the function itself, then this call can be eliminated by
reassigning the calling parameters to the values specified in
the recursive call, and then repeating the whole function.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-34
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Removal of Tall Recursion

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-35
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Can Tower of Hanoi be ssmplified?

/* Move: noves count disks fromstart to finish using tenp
for tenporary storage. */

void Move(int count, int start, int finish, int tenp)

if (count > 0) {
Move(count-1, start, tenp, finish);
printf("Mve a disk from%l to %l.\n", start,
finish);
Move(count-1, tenp, finish, start);
}

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-36
ALGOO0S, javed@kent.edu

Javed |. Khan@1999

Iterative Tower of Hanoi

{

void Move(int count, int start, int finish, int tenp)

if (count > 0) {
Move(count-1, start, tenp, finish);
printf("Mve a disk from% to %.\n", start, finish);
Move(count-1, tenp, finish, start);

voi d Move(int count, int start, int finish, int tenp)

{

int swap; /* tenporary storage to swap towers */
while (count > 0) {
Move(count - 1, start, tenp, finish);
printf("Mve % from% to %l.\n", count, start, finish);

count - - ;

swap = start;
start = tenp;
tenp = swap;

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-37
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Can n-queen be

simplified?

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-38
ALGO0S, javed@kent.edu

Javed |. Khan@1999

voi d AddQueen(voi d)
{
int col; /* colum being tried for the queen */

queencount ++;
for (col = 0; col < BOARDSIZE; col ++)
if (colfree[col] && upfree[queencount + col] &&

downf ree[queencount - col + DOANCFFSET]) {
/* Put a queen in position (queencount, col).
queencol [queencount] = col ;
col free[col] = FALSE;
upf ree[queencount + col] = FALSE;

downfree[queencount - col + DOANOFFSET] = FALSE;

if (queencount == BOARDSI ZE-1) /* termination condition
*/
Wi teBoard();
el se
AddQueen(); /* Proceed recursively.
*/
col free[col] = TRUE /* Now backtrack by renoving the
queen. */
upf ree[queencount + col] = TRUE
downfree[queencount - col + DOANOFFSET] = TRUE
queencount - - ;
}

Flashback: AddQueen()

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-39
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Demo:
Time Comparison of two
N-Queen Solutions

Queennr . exe

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-40
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Shoud we Always use Reaursion?
Case: Factorias
Recursive Version:

/* Factorial: recursive version.*/
int Factorial (int n)

{
if (n==0)
return 1;
el se
return n * Factorial(n-1);
}

DESIGN &
ALALYSISOF
ALGORITHM

Which one will work harder?

Iterative Version?

/* Function: iterative version.*/
int Factorial (int n)
{

int count, product;

for (product = 1, count = 2; count <= n;
count ++)

product *= count;
return product;

LECT-03, S-41
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Fibonacci Numbers

DESIGN &
ALALYSISOF
ALGORITHM

¢ Finomai Number

LECT-03, S-42
ALGO0S, javed@kent.edu

Javed |. Khan@1999

A Cute Solution
ALALYSISOF
ALGORITHM
int Fibonacci (int n)
t
if (n<=0)
return O;
elseif (n==1)
return 1,
el se
return Fibonacci (n-1) + Fibonacci(n-2);
}
Efficiency?
LECT-03, S-43
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Recursion Tree

Thegrowth is
nearly exponential!

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-44
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Iterative Fibonacci

/* Fibonacci: iterative version.*/

int Fibonacci(int n)

e
int i;
int twoback; /* second previous nunber, F_i-2 */
int oneback; /* previous nunber, F_i-1 */
int current; /* current nunber, F_i */
if (n<=0)
return O;
else if (n ==1)
return 1;
el se {
t woback = 0;
oneback = 1;
for (i =2; i <=n; i++) {
current = twoback + oneback;
t woback = oneback;
oneback = current;
}
return current;
}
}

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-45
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Comparison: Iteration vs. Recursion

Chain

Duplicate Task

Change Data Structures
Recursion Removal

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-46
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Guidelines

» |f therecursiontreehas asimple form,
the iterative version may be better.

» |f therecursiontreeinvaves dugicae
task, then data structures other than
stacks will be gopropriate.

» |f therecursion treeappears quite bushy,
with little dupli cate tasks, then reaursion
Islikely the natural solution.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-03, S-47
ALGOOS, javed@kent.edu
Javed |. Khan@1999

10

