

Growth of Functions

 How to Compare Functions?

DESIGN \& ALALYSIS OF ALGORITHM

- Order of Functions

Asymptotics

- Asymptotics means the study of functions of a parameter n, as n becomes larger and larger without bound.
- We will focus on:
- algorithms when it is running on relatively large data.
- on major characteristics, without being blinded by the details.
- On general principles that will apply to the analysis and comparison of many classes of algorithms.

Simplifying Functions: The Big Picture

- $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
- $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$
- $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$

Θ-notation

- A function $f(n)$ belongs to the set $\Theta(\mathrm{g}(\mathrm{n}))$ if there exist positive constants c_{1} and c_{2} such that it can be sandwiched between $c_{1} \cdot g(n)$ and $c_{2} \cdot g(n)$, for sufficiently large n.
- Example: $2 . \mathrm{n}^{2}+2=\Theta\left(\mathrm{n}^{2}\right)$
- We say $g(n)$ is an asymptotically tight bound for $\mathrm{f}(\mathrm{n})$.

Intuitive Picture of Θ-notation

$$
\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))
$$

A rule for deriving $\mathrm{g}(\mathrm{n})$

- Given any function $f(n)$, throw away the lower order term, and throw away the leading coefficient. It will give the class $g(n)$.
$-\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
- Examples:
$-2 . \mathrm{n}^{2}-3 \mathrm{n}=\Theta\left(\mathrm{n}^{2}\right)$
$-2 . n^{-5}+3 n=\Theta(n)$

Proof

- We must show the positive constants $\mathrm{c}_{1}, \mathrm{c}_{2}$ and n_{0} such that:
$-\mathrm{c}_{1} \mathrm{n}^{2} \leq 2 . \mathrm{n}^{2}-3 \mathrm{n} \leq \mathrm{c}_{2} \mathrm{n}^{2}$
- For all $\mathrm{n} \geq \mathrm{n}_{0}$, dividing by n^{2} yields:
$-c_{1} \leq 2-3 / n \leq c_{2}$
- The R.H.S. in equality can be made to hold:
- for any $\mathrm{n} \geq 1$, by choosing $\mathrm{c}_{2} \geq 2$
- The L.H.S. in equality can be made to hold:
- for any $\mathrm{n} \geq 3$, by choosing $\mathrm{c}_{1} \leq 1$

O-notation (Big-Oh)

- A function $\mathrm{f}(\mathrm{n})$ belongs to the set $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist a positive constants c such that it can be bounded below c.g(n) for sufficiently large n.
- Examples: 2. $\mathrm{n}^{2}+2=\mathrm{O}\left(\mathrm{n}^{2}\right)$
- If $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$, it must be $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$
- Also, $2 . n^{2}+2=O\left(n^{3}\right)$
- We say $g(n)$ is an asymptotically upper bound for $\mathrm{f}(\mathrm{n})$.

Although it should be "belongs to", we write it with equality

Intuitive Picture of O-notation

$$
\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~g}(\mathrm{n}))
$$

Ω-notation (Omega)

- A function $\mathrm{f}(\mathrm{n})$ belongs to the set $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist a positive constants c such that it can bounded above c.g(n) for sufficiently large n.
- Example: $2 . \mathrm{n}^{2}+2=\Omega\left(\mathrm{n}^{2}\right)$
- If $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$, it must be $\mathrm{f}(\mathrm{n})=$ $\Omega(\mathrm{g}(\mathrm{n}))$
- Also, $2 . \mathrm{n}^{2}+2=\Omega(\mathrm{n})$
- We say $g(n)$ is an asymptotically lower bound for $f(n)$.

o-notation (little oh)

- O-notation refers to upper bound that is not asymptotically tight.
- A function $f(n)$ belongs to the set $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if for all positive constants $\mathrm{c}, \mathrm{f}(\mathrm{n})$ can bounded above c. $g(n)$ for sufficiently large n.
- Or for all $\mathrm{c}, 0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c} . \mathrm{g}(\mathrm{n})$
- Example:2
- $\mathrm{n}^{2}=\mathbf{O}\left(\mathrm{n}^{2}\right)$
$-2 n^{2}=\mathbf{O}\left(\mathrm{n}^{3}\right)$?
$\mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n}))$ is a way of saying $\mathrm{f}(\mathrm{n})$ is insignificant relative to $g(n)$.
- But:
- $2 \mathrm{n}^{2} \neq \mathbf{o}\left(\mathrm{n}^{2}\right)$
$-2 n^{2}=\mathbf{o}\left(\mathrm{n}^{3}\right)$
- ω-notation refers to lower bound that is not asymptotically tight.
- A function $f(n)$ belongs to the set $\omega(\mathbf{g}(\mathbf{n}))$ if for all positive constants $\mathrm{c}, \mathrm{f}(\mathrm{n})$ can bounded below c. $g(n)$ for sufficiently large n.
- Or for all c, c.g(n) $\leq f(n)$
- Example:2
$-n^{2}=\Omega\left(n^{2}\right)$
$-2 n^{2}=\Omega(\mathbf{n})$?
ω-notation is to Ω - notation, what 0 -nation is to O -notation.
- But:
- $2 n^{2} \neq \omega\left(n^{2}\right)$
$-2 n^{2}=\omega(n)$

Comparison of Functions (QUIZ)

- Transitivity:
- $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ and $\mathrm{g}(\mathrm{n})=\Theta(\mathrm{h}(\mathrm{n})), \mathrm{f}(\mathrm{n})=\Theta(\mathrm{h}(\mathrm{n}))$?
- $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ and $\mathrm{g}(\mathrm{n})=\mathrm{O}(\mathrm{h}(\mathrm{n})), \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{h}(\mathrm{n}))$?
- $\quad \mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ and $\mathrm{g}(\mathrm{n})=\Omega(\mathrm{h}(\mathrm{n})), \mathrm{f}(\mathrm{n})=\Omega(\mathrm{h}(\mathrm{n}))$?
- $\quad \mathrm{f}(\mathrm{n})=\omega(\mathrm{g}(\mathrm{n}))$ and $\mathrm{g}(\mathrm{n})=\omega(\mathrm{h}(\mathrm{n})), \mathrm{f}(\mathrm{n})=\omega(\mathrm{h}(\mathrm{n}))$?
- $\quad \mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n}))$ and $\mathrm{g}(\mathrm{n})=\mathrm{o}(\mathrm{h}(\mathrm{n})), \mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{h}(\mathrm{n}))$?

Comparison of Functions (QUIZ)

- Reflexivity
- Given: $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
- $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$?
- $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$?
- $\quad \mathrm{f}(\mathrm{n})=\omega(\mathrm{g}(\mathrm{n}))$?
- $\quad \mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n}))$?

Comparison of Functions (QUIZ)

- Symmetry
- Given: $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
- $\mathrm{g}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n}))$?
- Given: $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$
- $\mathrm{g}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n}))$?
- $\mathrm{g}(\mathrm{n})=\Omega(\mathrm{f}(\mathrm{n}))$?

Ordering of Function

- We can order a set of function just like a set of integers by using asymptotics:
- if $\mathrm{f}(\mathrm{n})=0(\mathrm{~g}(\mathrm{n})), \mathrm{g}(\mathrm{n})=\mathrm{O}(\mathrm{h}(\mathrm{n})), \mathrm{h}(\mathrm{n})=\mathrm{O}(\mathrm{k}(\mathrm{n})) \ldots$
- we can say:
- $\mathrm{f}(\mathrm{n})<\mathrm{g}(\mathrm{n})<\mathrm{h}(\mathrm{n}) \ldots$

Analysis of Algorithm

- A class of students have been given the task of developing a solution for an algorithm to count the ALGORITHM number of snow flakes looking through the window. Here are the running time of the solutions.

```
\(A=200 \times \log .(\log n)+32 \times \log \cdot \log \cdot \log \left(\log n^{2}\right)\)
\(B=2^{\log n}-3 n^{.5}+10\)
\(C=\sqrt{2}^{\log n}+n^{\frac{1}{2}}\)
\(D=3 \times 2^{2^{n}}+\log .(2 \log n)\)
\(E=2^{n}-5 n+500\)
\(F=10+.5 \times \sqrt{n}+432\)
```

How can you compare their solutions?

Step-1: Focus on Big-Picture

```
A=200\timeslog.(logn)+32\timeslog.log.log(log n}\mp@subsup{n}{}{2}
\[
B=2^{\log n}-3 n^{.5}+10
\]
```



```
\[
C=\sqrt{2}^{\log n}+n^{\frac{1}{2}}
\]
C= \sqrt{}{2}
\[
D=3 \times 2^{2^{n}}+\log \cdot(2 \log n)
\]
D=3\times2 2
\[
E=2^{n}-5 n+500
\]
E=2n}-5n+50
F=10+.5\times\sqrt{}{n}+432
```


$$
F=10+.5 \times \sqrt{n}+432
$$

